首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
林业   1篇
农学   6篇
水产渔业   1篇
畜牧兽医   3篇
园艺   5篇
  2020年   1篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2011年   2篇
  2010年   2篇
  2008年   1篇
  2006年   1篇
  2003年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
In the wheat (Triticum aestivum L.) cultivar ‘Zenkoujikomugi’, a single nucleotide polymorphism (SNP) in the promoter of MOTHER OF FT AND TFL1 on chromosome 3A (MFT-3A) causes an increase in the level of gene expression, resulting in strong grain dormancy. We used a DNA marker to detect the ‘Zenkoujikomugi’-type (Zen-type) SNP and examined the genotype of MFT-3A in Japanese wheat varieties, and we found that 169 of 324 varieties carry the Zen-type SNP. In Japanese commercial varieties, the frequency of the Zen-type SNP was remarkably high in the southern part of Japan, but low in the northern part. To examine the relationship between MFT-3A genotype and grain dormancy, we performed a germination assay in three wheat-growing seasons. On average, the varieties carrying the Zen-type SNP showed stronger grain dormancy than the varieties carrying the non-Zen-type SNP. Among commercial cultivars, ‘Iwainodaichi’ (Kyushu), ‘Junreikomugi’ (Kinki-Chugoku-Shikoku), ‘Kinuhime’ (Kanto-Tokai), ‘Nebarigoshi’ (Tohoku-Hokuriku), and ‘Kitamoe’ (Hokkaido) showed the strongest grain dormancy in each geographical group, and all these varieties, except for ‘Kitamoe’, were found to carry the Zen-type SNP. In recent years, the number of varieties carrying the Zen-type SNP has increased in the Tohoku-Hokuriku region, but not in the Hokkaido region.  相似文献   
2.
Spontaneously Diabetic Torii (SDT) fatty rats, made by introducing the fa allele of the Zucker fatty rat into the SDT rat genome, represent a new model of obese type 2 diabetes. SDT fatty fa/fa (SDT fatty) rats exhibit overt obesity, hyperglycemia, and hyperlipidemia from about six weeks of age, and this is associated with hyperphagia by an induced disorder of leptin action. The present study was conducted to elucidate whether suppression of hyperphagia can improve reduce abnormalities in SDT fatty rats. SDT fatty rats were subjected to pair-feeding with SDT fatty +/ + (SDT) rats from 6 to 26 weeks of age, and the effects on metabolic parameters and diabetic complications were assessed. Body weights of the pair-fed rats were similar with those of SDT rats during the experimental period. Improvement of hyperglycemia or hypertriglyceridemia was observed from 8 to 16 or 12 weeks of age in the pair-fed rats, but hypercholesterolemia was not entirely improved during the experimental period. We also examined mRNAs expression in liver, and found that the expression associated with glyconeogenesis, such as glucose-6-phosphatase (G-6-Pase) and phosphoenolpyruvate carboxykinase (PEPCK), tended to decrease in the pair-fed rats, and the mRNA expression of hydroxymethylglutaryl-CoA (HMG-CoA) was elevated. Renal parameters, such as blood urea nitrogen and urinary albumin excretion, were improved in the pair-fed rats. The incidence or progression of diabetic complications, such as renal lesions and cataract, was reduced. In conclusion, suppression of hyperphagia in SDT fatty rats was effective in temporally improving hyperglycemia or hypertriglyceridemia, and reducing the incidence or progression of diabetic complications, but was ineffective in reducing hypercholesterolemia.  相似文献   
3.
The Ppd-A1 genotype of 240 Japanese wheat cultivars and 40 foreign cultivars was determined using a PCR-based method. Among Japanese cultivars, only 12 cultivars, all of which were Hokkaido winter wheat, carried the Ppd-A1a allele, while this allele was not found in Hokkaido spring wheat cultivars or Tohoku-Kyushu cultivars. Cultivars with a photoperiod-insensitive allele headed 6.9–9.8 days earlier in Kanto and 2.5 days earlier in Hokkaido than photoperiod-sensitive cultivars. The lower effect of photoperiod-insensitive alleles observed in Hokkaido could be due to the longer day-length at the spike formation stage compared with that in Kanto. Pedigree analysis showed that ‘Purple Straw’ and ‘Tohoku 118’ were donors of Ppd-A1a and Ppd-D1a in Hokkaido wheat cultivars, respectively. Wheat cultivars recently developed in Hokkaido carry photoperiod-insensitive alleles at a high frequency. For efficient utilization of Ppd-1 alleles in the Hokkaido wheat-breeding program, the effect of Ppd-1 on growth pattern and grain yield should be investigated. Ppd-A1a may be useful as a unique gene source for fine tuning the heading time in the Tohoku-Kyushu region since the effect of Ppd-A1a on photoperiod insensitivity appears to differ from the effect of Ppd-B1a and Ppd-D1a.  相似文献   
4.
Yellow mosaic disease, caused by wheat yellow mosaic virus (WYMV), is one of the most serious diseases of winter wheat in Japan and China. A single major QTL for WYMV resistance in the Japanese wheat variety 'Yumechikara', designated Q.Ymym, has been mapped on a 43.6 cM linkage block between the two markers Xcfd233 and Xgwm349 on chromosome 2D. We were able to obtain two recombinants within the block, which facilitated reducing the size of the linkage block. The pseudomolecule sequence of 'Chinese Spring' (CS) indicated that the original Q.Ymym region of 43.6 cM corresponded to 68.5 Mb and the narrowed Q.Ymym region represents a size of 27.3 Mb. The sequence features of the Q.Ymym region were unique in comparison with CS sequences, which may have led to the low recombination rate within the block. The Q.Ymym haplotype block was detected in other WYMV-resistant varieties but not in the susceptible varieties used in this study. The unique sequence structure of the Q.Ymym region allowed the development of co-dominant markers for use in marker-assisted selection.  相似文献   
5.
Yellow mosaic disease, caused by wheat yellow mosaic virus (WYMV), is one of the most serious diseases of winter wheat (Triticum aestivum L.) in Japan. The three pathotypes of WYMV are distributed in different geographical areas: pathotype I is found mainly in western and central Japan (Kanto), pathotype II in northern Japan (Tohoku and Hokkaido) and pathotype III on the southern island of Japan (Kyushu). A total of 246 doubled‐haploid (DH) lines, derived from a cross between ‘Yumechikara’ (resistant) and ‘Kitahonami’ (susceptible), were evaluated for 2 years for their resistance to WYMV pathotype I. A single major quantitative trait locus, Q.Ymym, mapping to chromosome 2D was associated with resistance to pathotype I in ‘Yumechikara’. This is the first time a QTL responsible for pathotype I resistance has been identified. Fine mapping of Q.Ymym indicated that it was on a tight linkage block originating from ‘Yumechikara’, and the markers associated with this block will accelerate the development of varieties resistant to WYMV pathotype I.  相似文献   
6.
7.
The effects of rearing temperature (23–29 °C) during the larval and juvenile stage on survival, growth and skeletal malformations in the seven-band grouper Epinephelus septemfasciatus were investigated. The survival rate of juveniles 30–40 mm in total length emerging from eggs was higher at 25 and 26 °C (0.1–1.3 %) than at 23 °C or 27–29 °C (0.004–1.5 %). Growth (increase in total length) was accelerated at higher temperatures. The frequency of malformed individuals was lower at 25–27 °C (36.0–61.5 %) than at 23, 28 or 29 °C (65.3–76.9 %). Specific incidences of spinal curvature and centrum fusion or defects in juveniles were not related to rearing temperature. However, incidences of twisted or compressed vertebrae (6.5–64.0 %) were higher at higher temperatures, while the incidence of bifurcated neural spine was significantly higher at 23 °C (43.6–54.4 %) than at other temperatures (3.3–22.7 %). The incidence rate of spinal curvature (23.3 %) was significantly higher in juveniles with a deflated swim bladder, regardless of rearing temperature. The results of this study suggest that the optimum culture temperature for seven-band grouper is 25–26 °C, collectively considering the survival, growth and incidences of abnormalities. Our results also demonstrate the significance of identifying the conditions for swim bladder inflation to prevent spinal curvature in seven-band grouper.  相似文献   
8.
Wheat yellow mosaic, caused by Wheat yellow mosaic virus (WYMV), is one of the most devastating soil-borne diseases of winter wheat (Triticum aestivum L.) in Japan. Yellow-striped leaves and stunted spring growth, symptomatic of WYMV infection, result in severe yield loss. A new putative WYMV resistance gene in the European wheat cultivar ‘Ibis’ was mapped in the cluster of microsatellite markers including Xcfd16, Xwmc41, Xcfd168 and Xwmc181 on the long arm of chromosome 2D at the distances of 2.0 cM, 4.0 cM, 7.1 cM and 12.4 cM, respectively. WYMV-resistant cultivars contained a common haplotype of the four markers, whereas moderately susceptible and susceptible cultivars did not. These results should be useful in marker-assisted selection for WYMV resistance in wheat.  相似文献   
9.
10.
Summary

This report demonstrates the diversity of S-haplotypes in Japanese plum by molecular cloning of genomic DNAs and cDNAs that encode S-RNases. Nine different DNA fragments, designated as SaSi, were obtained from 17 Japanese plum cultivars by PCR with an S-RNase gene-specific primer set, Pru-C2 and PCE-R. Eleven different S-haplotypes were found in these cultivars. The banding patterns obtained with another S-RNase gene-specific primer set, Pru-T2 and PCE-R, corresponded to the S-haplotypes predicted from the Pru-C2 and PCE-R primer set. Several cultivars had the same S-haplotypes. Partial genomic DNAs for eight S-RNase genes and cDNAs for two S-RNases were cloned and sequenced. Deduced amino acid sequences contained conserved regions among the rosaceous S-RNases. Comparisons of the sequences from cDNAs and genomic DNAs revealed the presence of two introns in the S-RNase genes of Japanese plum as in other Prunus S-RNase genes. Pollination incompatibility groups and self-compatibility in Japanese plum were discussed with reference to the S-haplotypes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号