首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   3篇
水产渔业   4篇
  2017年   2篇
  2016年   1篇
  2011年   1篇
排序方式: 共有4条查询结果,搜索用时 62 毫秒
1
1.
Resource use was investigated at 34 Litopenaeus vannamei and five Penaeus monodon farms in Thailand and 30 L. vannamei and 24 P. monodon farms in Vietnam. Farms varied in water surface areas for production, reservoirs, canals, and settling basins; in pond size and depth; and in water management, stocking density, feeding rate, amendment input, aeration rate, crop duration, and crops per year. Production of L. vannamei averaged 17.3 and 10.9 m.t./ha/yr, and feed conversion ratio averaged 1.49 and 1.33 in Thailand and Vietnam, respectively. On average, production of 1 m.t. of L. vannamei required 0.58 ha land, 5,400 m3 water, 60 GJ energy, and 1218 kg wildfish in Thailand and 1.76 ha land, 15,100 m3 water, 33.7 GJ energy, and 1264 kg wildfish in Vietnam. Resource use per metric ton of shrimp declined with greater production intensity. In Thailand, P. monodon was produced at 0.2–0.4 m.t./ha/yr, with no inputs but water and postlarvae. In Vietnam, P. monodon production averaged 3.60 m.t./ha/yr. Production of 1 m.t. of P. monodon required 0.80 ha land, 36,000 m3 water, 47.8 GJ energy, and 1180 kg wildfish, and resource use per ton production declined with increasing production intensity.  相似文献   
2.
There is growing interest in sustainable intensification of aquaculture production. Yet little economic analysis has been done on farm‐level effects of the economic sustainability of production intensification. Data from 83 shrimp farms (43 in Vietnam and 40 in Thailand) were used to identify (through principal component and cluster analyses) 13 clusters of management practices that reflected various scales of production intensity that ranged from 0–1999 kg/ha/crop to 10,000 kg/ha/crop and above, for both Penaeus monodon and Litopenaeus vannamei in Vietnam and Thailand. The clusters identified reflected sets of management practices that resulted in differing yields despite similarities in stocking densities among some clusters. The enterprise budget analysis developed showed that the more intensively managed clusters outperformed the less intensively managed clusters in economic terms. More intensively managed farm clusters had lower costs per metric ton of shrimp produced and were more profitable. The greater yields of shrimp produced per hectare of land and water resources in more intensively managed shrimp farms spread annual fixed costs across a greater volume of shrimp produced and reduced the cost per metric ton of shrimp. Costs per metric ton of shrimp produced decreased from the lowest to the highest intensity level (from US$10,245 at lowest intensity to US$3484 at highest for P. monodon and from US$24,301 to US$5387 for L. vannamei in Vietnam and from US$8184 at the lowest intensity level to US$3817 at the highest intensity level per metric ton for L. vannamei in Thailand). Costs of pond amendments used in shrimp production were particularly high in Vietnam and largely unwarranted, whereas fixed costs associated with the value of land, production facilities, equipment, and labor were sufficiently high in Thailand so that net returns were negative in the long run. Nevertheless, economic losses in Thailand were less at greater levels of intensification. The study demonstrated a clear value proposition for shrimp farmers to use natural resources (such as land) and other inputs in an efficient manner and supports findings from corresponding research on farm‐level natural resource use efficiency. Additional research that incorporates economic analysis into on‐farm studies of sustainable intensification of aquaculture is needed to provide ongoing guidance related to sustainable management practices for aquaculture.  相似文献   
3.
A coated copper sulfate algicide designed for controlled release of copper was evaluated for its effectiveness in controlling phytoplankton in hybrid catfish, ♀Ictalurus punctatus × ♂Ictalurus furcatus, ponds. Copper concentrations were greater in ponds receiving weekly treatments with copper sulfate crystals than in ponds in which the coated copper sulfate was suspended in porous bags and left in ponds during the study. However, the coated copper sulfate treatment provided a similar degree of phytoplankton control for a period of about 4 mo. Copper additions did not negatively affect catfish survival, production, or feed conversion in either the copper sulfate crystal treatment or in the coated copper sulfate treatment as compared with the control (P > 0.05). Flavor scores for fish did not differ between control and treatments (P > 0.05). The coated copper sulfate appeared to be a potentially effective method for controlling phytoplankton in aquaculture ponds. It would be easier to apply and require fewer applications, and the coated copper algicide would not present a fish toxicity issue that can arise from high copper concentration immediately following copper sulfate crystal treatment.  相似文献   
4.
An experiment consisting of eight potassium fertilization rates ranging from 0 to 60 kg K2O/ha was conducted in earthen ponds stocked with bluegill, Lepomis macrochirus, at Auburn University in Alabama. Each pond also received nitrogen and phosphorus fertilization at 6 kg N and 3 kg P2O5/ha per application. After 11 fertilizer applications for over 7 mo, potassium concentrations in pond water ranged from 3.3 mg/L in control ponds to 38.9 mg/L in the pond receiving 60 kg K2O/ha. The coefficients of determination (R2) between potassium fertilization rate and bluegill production and between potassium concentration in pond water and bluegill production were 0.039 and 0.071, respectively. Potassium fertilization appears unnecessary in bluegill ponds where water contains more than 2 mg/L of potassium.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号