首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
林业   1篇
综合类   6篇
  2023年   1篇
  2022年   3篇
  2021年   3篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
针对木材结构尺寸及介质改变对应变能传播的影响,研究应力波在变结构的L型试件中的声发射(acoustic emission,AE)特性。首先,参照ASTM-E976标准,在樟子松L型试件表面不同位置产生AE源,并利用采样频率为500 kHz的AE采集系统获取试件表面4个固定位置的AE信号。其次,依据小波分析原理对原始AE信号进行降噪并重构AE波形,进而研究木材结构变化对AE信号频域特征的影响。最后,基于对比分析,研究空气介质对于信号传播特性的影响。结果表明,当AE源位于锯材处时,信号以纵波和横波混合的形式单向传播,木材的结构变化主要影响低频信号成分,使得信号呈现高频带分布;而空气介质对于其时频域均有显著影响;当AE源位于薄板时,木材结构变化、传播路径及空气介质对于AE信号时频域特性均有显著影响。  相似文献   
2.
针对木材声发射(acoustic emission,AE)信号的随机特性,提出了一种基于奇异谱和信号相关性分析的木材表面AE源直线定位算法。首先,依据ASTM标准通过折断铅芯的方式分别在樟子松和榉木试件表面产生AE源,并在顺纹理方向布置2个AE传感器,其中采样频率设置为500 kHz。然后,采用奇异谱分析(singular spectrum analysis,SSA)算法提高AE信号的信噪比,再分别基于信号相关性和最大值分析2种方法计算AE信号在木材表面顺纹理方向的传播速度。最后,依据AE信号传播时差和计算速度,基于时差定位原理设计AE源定位算法。并针对SSA处理前后的AE信号,采用不同定位算法进行比较试验。结果表明,直接对原始AE信号采用基于信号相关性和最大值分析方法确定信号传播速度时,樟子松试件2个不同位置AE源的定位误差分别为51.8%、55.7%和75.7%、46.6%;榉木试件2个不同位置AE源的定位误差分别为52.0%、44.8%和37.7%、45.5%。而对于经SSA处理后的AE信号,樟子松试件相应的定位误差分别为5.1%、33.2%和2.6%、31.7%;榉木试件相应的定位误差分别为3.1%、54.9%和5.1%、22.9%。因此,对原始AE信号进行SSA降噪处理后,再基于信号相关性分析方法确定信号传播速度,能够显著提高木材表面AE源的定位精度。  相似文献   
3.
为研究木材损伤断裂时的声发射(AE)信号所激发的驻波信号特征与木材固有特性之间的关系,采用薄木条折断的方式产生AE源,在小波变换的基础上分析驻波频率,并计算纵波传播速率,依据弹性波理论计算出木材顺纹弹性模量(MOE)。首先,在2种不同长度的木材试件一端分别加工出8根80 mm×10 mm的薄木条,通过外加冲击力折断木条以产生AE源,通过放置在试件端面的2个传感器采集原始AE信号,采样频率设定为500 kHz。然后,根据驻波特性确定原始信号的驻波阶段,进而对该阶段AE信号进行4层小波分解,依据分解后信号的时频域特征析取驻波信号波形。最后,依据驻波产生原理计算纵波传播速率,并结合弹性波理论计算试件的MOE。结果表明,拉伸试验测得樟子松和榉木试件的MOE分别为9.30 GPa和11.63 GPa, 800 mm樟子松和榉木试件通过驻波计算所得MOE分别为9.37 GPa和12.34 GPa,与实测MOE的误差分别为0.75%和5.24%;600 mm的樟子松和榉木试件通过驻波计算所得MOE分别为9.31 GPa和11.81 GPa,与实测MOE的误差分别为0.10%和1.55%。  相似文献   
4.
为研究不同声发射(acoustic emission,AE)模态的传播特性与能量衰减模式,依据波动理论提出一种木材AE信号表面横波与内部纵波析取方法,进而建立AE信号能量衰减模型。首先,依据ASTM-E976-2015通过铅芯折断的方式在樟子松锯材表面产生AE源,并在不同位置采集表面横波与内部纵波的AE原始信号,采样频率设置为500 kHz;然后,采用小波分析方法从原始信号中重构AE波形,分析木材AE信号表面横波与内部纵波的传播特性;最后,通过指数函数拟合的方法,构建表面横波与内部纵波能量衰减模型。结果表明:表面横波与内部纵波在樟子松锯材中传播时AE能量均呈明显的指数衰减规律,但在频率分布和传播速率上均有较大差异。表面横波在传播初始阶段主要分布在以80.0 kHz和113.3 kHz为中心的两个中高频段内,随着其在木材表面的传播,高频信号迅速衰减为低频信号。而内部纵波始终处于相对低频段内,其平均传播速率约为表面横波的4.6倍。  相似文献   
5.
应用独立成分分析和小波分解对木材声发射信号的析取   总被引:1,自引:0,他引:1  
选取常温气干状态表面无缺陷的樟子松(Pinus sylvestris var.mongolica Litv.)实木为试验材料,制成长800 mm、宽60 mm、厚30 mm的试件。使用UTM5105型万能力学试验机对试件进行破坏性试验,以500 kHz的采样频率采集木材三点弯曲试验产生的声发射(AE)信号,截取试验后期幅值无显著变化的一段原始信号作为研究对象。采用依据负熵最大化的快速独立成分分析(FastICA)盲源分离算法将原始信号分离成噪声和声发射信号,再对分离后的声发射信号进行5层小波分解后重构声发射信号波形;对重构声发射信号进行频域分析,通过与已知声发射信号的频域特征比较,验证信号析取的有效性。结果表明:构建的依据独立成分分析和小波分解(FastICA-Wavelet)的声发射信号析取方法,能够从混有声发射信号的类噪声信号中分解出声发射信号,利用小波分解能够进一步降低非独立噪声成分的影响。  相似文献   
6.
为获得木材在弯曲破坏过程中的声发射(acoustic emission,AE)信号特征,从AE信号的随机性出发,利用AE信号信息熵辨识木材的损伤过程,并研究木材在不同损伤断裂水平下的AE信号分布特性。首先,对气干状态的榉木和樟子松试件进行三点弯曲试验,并通过谐振频率为150 kHz的AE传感器采集原始AE信号,采样频率设置为500 kHz。然后,采用小波变换重构AE信号波形,依据无AE发生时的信号幅值确定AE阈值,统计每秒内超过阈值的次数并作为AE活动计数,再以活动计数为随机变量定义AE信息熵。最后,依据信息熵值确定应变能释放的转折点,并结合三点弯曲试验的载荷-时间曲线,将木材损伤断裂过程划分为线性变形、非线性变形、宏观断裂3个阶段。以10 ms为间隔分析并统计AE信号的频率,获得木材弯曲破坏过程的AE信号频率分布情况,从而揭示不同损伤阶段的AE信号特征。结果表明,线性变形阶段,AE信号表现为低幅值、低频率,主要集中在30~55 kHz频段内;非线性变形和宏观断裂阶段,AE信号中既存在大量的30~55 kHz低频信号成分,又存在100~110 kHz和115~130 kHz的高频信号。研究提出的基于AE活动数信息熵能够准确反映应变能释放的集中程度,为木材损伤断裂水平评价提供了客观依据。  相似文献   
7.
为准确计算樟子松断裂时在表面和内部传播的声发射(acoustic emission,AE)信号传播速度,对樟子松表面和内部传播AE信号的有效频段进行研究。为得到樟子松断裂时候产生的AE信号,使用万能力学试验机进行三点弯曲压断试验,并在试件表面相距固定距离的2个点采集原始AE信号。为得到不同频段的AE信号,对原始AE信号进行小波分解并重构AE波形。针对不同频段的AE信号,采用信号相关性分析法计算信号到达2个传感器的传播时差,以此计算AE信号的传播速度。根据AE信号在不同介质中的传播规律以及AE信号的传播速度判断AE信号的传播介质和AE信号的主要频率。结果表明,当AE信号在樟子松表面传播时,AE信号的有效频段为15~62 kHz。当AE信号在樟子松内部传播时,AE信号的有效频段为125~250 kHz。使用有效频段内信号计算AE信号的传播速度,可显著提升计算得到的AE信号传播速度的准确性。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号