首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
林业   2篇
综合类   5篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2020年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
复合硅改性热处理杨木的制备及性能   总被引:1,自引:1,他引:0  
  目的  针对木材树脂改性剂释放甲醛不环保,无机改性材吸湿性高等问题,将廉价易得的硅石粉溶液化,再有机杂化,制得高渗透、环保、防火的水溶性木材复合硅改性剂,通过真空加压浸渍处理和热处理联合改性,可以有效提高木材的物理力学和阻燃等性能。  方法  分别制备硅油复合硅改性剂(SC2)和偶联剂杂化硅改性剂(HS2),对人工林杨木进行浸渍处理,再将浸渍材进行高温热处理,测试分析复合硅改性材及其热处理材的物理力学性能和阻燃性能。  结果  热处理使未处理材和改性材的质量与绝干密度均下降,硅油复合硅改性材(W-SC2)热处理后的质量损失率与绝干密度损失率最大。与W-SC2相比,硅油复合硅改性热处理材(TW-SC2)的吸湿率增大;偶联剂杂化硅改性热处理材(TW-HS2)的吸湿率较偶联剂杂化硅改性材(W-HS2)明显降低,抗吸湿性改善明显。与杨木未处理材(W)相比,各组改性材的力学性能均显著提高,且明显优于TW-SC2。W-HS2的点燃时间比W延迟8 s,火灾指数由0.043 m2s/kW增大至0.140 m2s/kW,TW-HS2的点燃时间比W延后9 s,火灾指数比W-HS2提高了64.3%。与W相比,TW-HS2的总热释放量减小29.4%,热释放速率峰值下降,且第二热释放速率峰值出现时间延后;W-HS2和TW-HS2的总生烟量比W大;HS2浸渍改性联合热处理,可以提升木材阻燃性能。改性材的热降解速率较未处理材降低明显,热稳定性提高,说明HS2改性剂具有明显的促进成炭作用。  结论  以硅石资源为主要原料,有机杂化制得环保、高效的木材复合硅改性剂HS2,通过真空加压浸渍?热处理联合改性工艺,可有效改善人工林杨木的物理力学和阻燃等性能,实现其绿色改性,应用前景广阔。   相似文献   
2.
为了增强无机改性组分与木材组分间的联结作用,分别在硅石溶液化过程中或硅石溶液中加入硅油,制得硅油同步杂化复合硅改性剂(SC1)、硅油分步杂化复合硅改性剂(SC2);分别用有机偶联剂对模数1.0的硅酸钠溶液和模数2.4的硅石溶液进行杂化,制得偶联剂杂化硅酸钠溶液改性剂(HS1)、偶联剂杂化复合硅改性剂(HS2);测试分析改性剂溶液性能及浸渍改性杨木的物理力学性能。结果表明:(1)硅石溶液化过程中加入硅油同步杂化,不影响二氧化硅转化率,溶液更稳定,模数较小的HS1,pH值更大、黏度更小、储存期更长;(2)有机杂化可进一步提升改性材密度10%以上,复合硅改性杨木的吸药量均达250%以上,质量增加率、密度均提高45%以上;(3)有机杂化能有效降低硅石溶液改性材的吸湿性,4种复合硅改性材中,SC2改性材的吸湿性最小,HS1比HS2改性材的吸湿性更大,说明改性剂中二氧化硅模数越大,改性材吸湿性越小;(4)与素材相比,硅石溶液...  相似文献   
3.
杜浩佳    刘强强    吕文华   《西北林学院学报》2021,36(5):197-201
生物矿化是指由生物体通过生物大分子调控生成无机矿物的过程,生物成因矿物具有有序排列和优异性能,是宏观性能和微观结构的有机统一,它为木材仿生功能性改良提供了新的思路和途径。综述了木材天然矿物成分的种类、分布、矿化机理,以及仿生木质复合材料如趋磁性木材、超疏水木材、仿生硅化木材等的最新研究进展,建议加强木材生物矿化机理、生物矿化工艺和仿生矿化功能等研究,实现木材的高效高值利用。  相似文献   
4.
通过木材改性实现人工林低密度软质木材的提质增效,高效利用人工林资源,对我国木材工业的可持续发展和生态建设具有重要意义。木材硅化改性可以有效提高木材性能,但改性材性较脆、工艺复杂、成本较高等问题限制了其实际应用。文中分别从木材硅化改性剂种类、改性方法、改性机理和改性材性能等方面综述了木材硅化改性的研究成果,讨论了目前木材硅化改性存在的主要问题。建议基于有机-无机杂化研制多效一体化木材硅化改性剂,改进工艺,提升性能,降低成本,从而推动硅化木的开发和利用;开展木材仿生硅化改性研究,促进组分界面结构性连接,全面提升木材性能。  相似文献   
5.
  目的  研究改性材的微观形貌、化学结构和元素成分等变化,探讨三聚氰胺–尿素–葡萄糖(MUG)生物质树脂复合改性剂对杨木的改性作用机理,旨在为MUG复合改性剂的应用提供依据,促进木材的绿色改性。  方法  通过将有机硅烷等疏水基团,引入MUG生物质树脂与硅酸钠的复配溶液中,制备硅烷杂化MUG树脂/硅酸钠复合改性剂(GST),对杨木进行真空加压浸渍处理,测试改性杨木的物理力学性能,采用扫描电镜–X射线能谱仪(SEM-EDX)、傅里叶变换红外光谱仪(FTIR)、X射线光电子能谱仪(XPS)和X射线衍射仪(XRD)等,表征改性材的微观形貌、化学结构、元素成分和结晶度,利用微型量热仪(MCC)测试其燃烧性能和热解特性。  结果  SEM-EDX分析表明:GST改性剂渗透性好,能有效渗入木材细胞腔和细胞壁中;改性材的C、O、Si元素无规分布于木材细胞腔、细胞壁、细胞间隙等处,导管沉积最为明显;改性剂对木材孔隙的填充以及对纤维素非结晶区的充胀,有效提高了木材的尺寸稳定性和力学性能。FTIR分析表明:GST改性材中半纤维素等多糖与改性剂发生了交联反应,减少了C=O、—OH等吸水性基团。XPS分析表明:GST改性材的C1最多,C3最少,木材的多糖类物质、木质素醇羟基、酚羟基以及羰基等活性基团与改性剂发生反应,减少了羰基等活性基团,增加了C—H、C—C结构含量。XRD分析表明:GST改性材衍射峰无明显变化,相对结晶度增大,说明改性剂进入纤维素非结晶区使其分子排列更加有序。MCC分析表明:GST改性材的热释放能力、热释放速率峰值和总热释放量分别下降了65.7%、66.2%和6.2%,800 ℃残炭率提高了122.6%,热释放强度大大降低,火灾危险性减小。  结论  GST复合改性剂可有效渗入杨木内部,与木材中半纤维素等多糖发生交联反应,减少糖基等活性基团,使非结晶区排列更为有序,从而提升改性杨木的物理力学性能。   相似文献   
6.
将硅石溶液经有机硅烷杂化后浸渍人工林杨木,再对其进行热处理,测试分析改性材的物理力学性能、化学结构及形貌特征,探讨木材联合改性机理。结果表明:1)复合硅石溶液改性使杨木的密度、强度和阻燃性均显著提高,但尺寸稳定性欠佳,热处理可明显增强其尺寸稳定性和阻燃性;2)改性剂填充固化于木材细胞腔,甚至渗入细胞壁中,可起到有效的增强作用;3)热处理可促进改性剂与木材组分发生稳固的Si—O—Si化学结合;4)联合改性材中Si原子配位数增多,缩聚固化程度更高,稳定性增强。复合硅石溶液/热处理联合改性是一种应用前景广阔的绿色木材改性技术。  相似文献   
7.
【目的】通过优化葡萄糖/三聚氰胺/尿素树脂(MUG)的葡萄糖配比及MUG树脂与硅酸钠的配比,减少二氧化硅及葡萄糖羟基残留,以改善改性材吸湿、尺寸不稳定等问题。【方法】设置葡萄糖、三聚氰胺、尿素物质的量比为m∶1∶4(m分别为2,4,6,8,10和12),根据红外解析树脂预聚程度,测定树脂黏度、固含量和水溶倍数等性能,筛选出优化MUG树脂的葡萄糖配比;将优化制备的MUG树脂与硅酸钠复配得5种改性剂:G5S25、G10S20、G15S15、G20S10、G25S5G代表MUG树脂,S代表硅酸钠,下标数值代表其在改性剂中的质量分数),通过测定改性材黏度、pH值和改性材的密度、增重率、吸水率、尺寸稳定性、力学性能,优化MUG树脂与硅酸钠的复合配比。【结果】①随着葡萄糖增加,MUG树脂的黏度、固含量增大,水溶性好,储存更稳定。②红外分析表明,随着葡萄糖增加,MUG树脂在1 667 cm-1处的酰胺羰基峰、在1 630 cm-1处的酰胺N—H键弯曲振动峰均变小,在1 552和1 421 cm-1处的亚氨基树脂特征峰、在770 cm-1处的呋喃环特征峰均增强;当葡萄糖物质的量比增大至8以上时,上述吸收峰强度无明显变化,故葡萄糖物质的量比宜为8。③随着树脂含量增加,MUG树脂/硅酸钠改性剂的黏度增大、pH值降低,G25S5改性剂不稳定、易产生沉淀。④各组改性材中,以G20S10改性材的增重率最大、吸水率最低,径向、弦向、体积湿胀率最低;与素材相比,其密度提高了60.9%,浸水144 h时的吸水率下降35.4%;其径向、弦向、体积抗湿胀率分别为60.81%,34.20%和51.87%,抗弯弹性模量、抗弯强度和顺纹抗压强度均比素材明显提高。【结论】MUG树脂能有效抑制硅酸钠引起的吸湿和皱缩,二者的优化复配比例为质量分数20%树脂和质量分数10%硅酸钠。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号