首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3224篇
  免费   141篇
  国内免费   2篇
林业   235篇
农学   464篇
基础科学   87篇
  811篇
综合类   82篇
农作物   272篇
水产渔业   69篇
畜牧兽医   977篇
园艺   98篇
植物保护   272篇
  2023年   22篇
  2022年   36篇
  2021年   48篇
  2020年   86篇
  2019年   87篇
  2018年   119篇
  2017年   136篇
  2016年   108篇
  2015年   83篇
  2014年   94篇
  2013年   296篇
  2012年   140篇
  2011年   158篇
  2010年   125篇
  2009年   113篇
  2008年   112篇
  2007年   138篇
  2006年   143篇
  2005年   110篇
  2004年   71篇
  2003年   71篇
  2002年   67篇
  2001年   48篇
  2000年   42篇
  1999年   47篇
  1998年   34篇
  1997年   34篇
  1996年   34篇
  1995年   34篇
  1994年   28篇
  1993年   28篇
  1992年   30篇
  1991年   36篇
  1990年   31篇
  1989年   37篇
  1988年   46篇
  1987年   35篇
  1986年   29篇
  1985年   24篇
  1984年   26篇
  1983年   26篇
  1982年   22篇
  1980年   34篇
  1979年   37篇
  1978年   20篇
  1976年   20篇
  1971年   20篇
  1970年   37篇
  1969年   24篇
  1968年   23篇
排序方式: 共有3367条查询结果,搜索用时 234 毫秒
1.
Spot blotch (SB), caused by Bipolaris sorokiniana, is a devastating disease of wheat globally, especially in South Asia and South America. Understanding the genetics of resistance to SB is important for developing breeding strategies to improve resistance. A panel of 301 genotypes from Afghanistan was phenotyped over two crop seasons using a mixture of virulent B. sorokiniana isolates and genotyped using DArTSeq to obtain genome-wide markers. Fifty genotypes (16.6%) showed disease scores less than the resistant control. Principal component analysis using the genotypic data clustered the genotypes into five different groups. Among models used for genome-wide association mapping, the multilocus mixed model, and fixed and random model circulating probability unification algorithms were most effective in identifying significant marker-trait associations (MTA). Twenty-five MTAs at p ≤ .001 were identified on chromosomes 1A, 1B, 1D, 2B, 2D, 3A, 3B, 4A, 5A, 5B, 6A, 7A, and 7D, indicating the quantitative nature of resistance to SB. Phenotypic variation explained by these markers ranged from 2.0% to 17.7%, and genomic regions on the chromosomes 1D, 2D, 3A, 3B, 4A, 5A, and 5B coincided with loci identified in previous studies. Three single nucleotide polymorphism (SNP) markers on chromosomes 1B (SNP 1113207) and 5A (SNPs 5411867 and 998276) were significant in both crop seasons as well as in the combined analysis across seasons. Marker 5411867 is close to Vrn-A1, shown to be associated with SB in previous studies. Furthermore, among known SB resistance genes, Sb2 on chromosome 5B was predicted to be significant in this panel.  相似文献   
2.
ABSTRACT

The immunostimulatory and disease-resistance properties of Achyranthes aspera were evaluated in rohu (Labeo rohita) challenged with Aeromonas hydrophila. Experimental diets were enriched with leaves at 0.25% (D1) and 0.5% (D2) and seeds at 0.5% (D3); the control diet (D4) was without any enrichment. Rohu (2.02 ± 0.23 g) were cultured for 75 days and then challenged with bacteria. The highest average weight was observed in the D3 diet-fed fish. The cumulative mortality rates were 70%, 60%, 40%, and 30% in the D4, D1, D2, and D3 diets fed to rohu respectively. Enriched diets significantly increased myeloperoxidase, nitric oxide synthase, and serum lysozyme levels and decreased malondialdehyde and carbonyl protein content. Expressions of lysozyme C and lysozyme G were significantly (P < .05) higher in the D3 diet-fed fish. In the kidney, IL-1β and TLR 4 were up-regulated in enriched-diet-fed fish. Supplementation of seeds and leaves at 0.5% showed a positive impact in fish.  相似文献   
3.
Wilt disease caused by Fusarium solani is a serious constraint to Dalbergia sissoo (shisham) plantations in northern India. In this study, the antagonistic potential of 40 bacterial isolates recovered from rhizophere soil of healthy shisham trees, and a well‐characterized Trichoderma species (Trichoderma virens) were tested for their possibility as biocontrol agents for F. solani. Two promising isolates (S1 and S15) were identified which inhibited pathogen growth, caused chitin degradation, produced siderophores and solubilized phosphate in vitro. Isolate S15 scored highest for hydrogen cyanide (HCN) production while isolate S1 was a non‐HCN producer. These two isolates were identified as Serratia marcescens (S1) and Pseudomonas azotoformans (S15) following sequence analysis of 16S rDNA. In dual culture assays, T. virens caused 80% inhibition of mycelial growth of the test fungus. The three selected antagonists when tested in planta in the glasshouse completely suppressed production of wilt symptoms on 12‐month‐old shisham plants. Further work is needed to ascertain the potential of these isolates to be used as biocontrol agents to manage shisham wilt under field conditions.  相似文献   
4.
A field study on assessment of crop establishment methods on yield, economics and water productivity of rice cultivars under upland and lowland production ecologies was conducted during wet seasons (June–November) of 2012 and 2013 in Eastern Indo-Gangetic Plains of India. The experiment was laid-out in a split-plot design (SPD) and replicated four times. The main-plot treatments included three crop establishment methods, viz. dry direct-seeded rice (DSR), system of rice intensification (SRI) and puddled transplanted rice (PTR). In sub-plots, five rice cultivars of different groups like aromatic (Improved Pusa Basmati 1 and Pusa Sugandh 5), inbreds (PNR 381 and Pusa 834) and hybrid (Arize 6444) were taken for their evaluations. These two sets of treatments were laid-out simultaneously in two production ecologies, upland and lowland during both years. In general, lowland ecology was found favourable for rice growth and yield and resulted in 13.2% higher grain yield as compared to upland ecology. Rice grown with SRI method produced 19.4 and 7.0% higher grain yield in 2012 and 20.6 and 7.1% higher in 2013, over DSR and PTR. However, PTR yielded 13.1 and 14.5% higher grain over DSR during 2012 and 2013, respectively. On an average, Arize 6444 produced 26.4, 26.9, 28.9 and 54.7% higher grain yield as compared to PS 5, P 834, PNR 381 and IPB1, respectively. Further, the interaction of production ecologies × crop establishment methods revealed that, in upland ecology, SRI recorded significantly higher grain yield as compared to PTR and DSR, but in lowland, grain yield resulting from SRI was similar to the yield obtained with PTR and significantly higher than DSR. The latter two methods (PTR and DSR) yielded alike in lowland ecology in both study years. The production ecologies × crop establishment methods × cultivars interaction on grain yield showed that the growing of Arize 6444 cultivar using SRI method in upland ecology resulted in the higher grain yield (8.87 t/ha). But the cost of production was also highest in SRI followed by PTR and DSR across production ecologies and cultivars. Cultivation of hybrid (Arize 6444) involved higher cost of production than all other cultivars. Irrespective of crop establishment methods and cultivars, gross returns, net returns and B:C ratio were significantly higher in lowland compared to upland ecology. Owing to higher grain yield, SRI method fetched significantly higher gross returns and net returns over PTR and DSR. Average increase in net return with Arize 6444 was 68.8, 41.0, 37.7 and 33.1% over IPB 1, PNR 381, P 834 and PS 5, respectively. There was a saving of 30.7% water in SRI and 19.9% in DSR over PTR under upland ecology. Similarly in lowland ecology, water saving of 30.2% was observed in SRI and 21.2% in DSR over PTR. Due to higher yield and saving on water, SRI returned significantly higher total water productivity (TWP) (5.9 kg/ha-mm) as compared to DSR (3.5 kg/ha-mm) and PTR (3.6 kg/ha-mm) under upland ecology. In lowland ecology, also SRI (6.2 kg/ha-mm) resulted in higher TWP as compared to other two methods. However, DSR gave significantly higher TWP as compared to PTR. Among cultivars, hybrid Arize 6444 recorded the highest TWP in both upland and lowland production ecologies across crop establishment methods. Hence, growing of hybrid Arize 6444 with SRI method can enhance rice productivity and water-use efficiency in lowland and upland production ecologies of Eastern Indo-Gangetic Plains and in other similar regions.  相似文献   
5.
Weeds caused serious problem on yield reduction of basmati rice worldwide. Losses caused by weeds varied from one country to another, depending on the presence of dominant weeds and the control methods practiced by farmers; therefore, suitable plant population and weed management practices should be adopted. Keeping these in mind, a field experiment was carried out during kharif seasons of 2009 and 2010 at crop Research Centre of SVPUA&T, Meerut, India comprising 4 planting geometries, viz. 20, 30, 40, and 50 hills m?2 as main plot factor, and 5 weed management practices (Butachlor @ 1.0 kg ha?1, Butachlor @ 1.0 kg ha?1 fb (followed by) one hand weeding, Butachlor @ 1.0 kg ha?1 fb Almix @ 4 g ha?1, two hand weedings and weedy check) in a split plot design with 3 replications. Experimental results revealed that plant population of 50 hills m?2 proved superior over that of 20 hills m?2 in respect of weed density, weed dry weight, number of tillers m?2, yield attributes, grain, straw, and biological yields. The maximum grain yield (29.00 and 31.00 q ha?1) and straw yield (51.30 and 52.50 q ha?1) were recorded in 50 hills m?2 followed by 40 hills m?2 during 2009 and 2010, respectively. In respect of nitrogen, phosphorus, and potassium removal, a reverse trend was observed: the highest in 20 hills m?2 followed by 30, 40, and 50 hills m?2. As far as the weed management practices are concerned, both chemical and mechanical methods of weed control were found superior over weedy check. The lowest weed density, dry weight, and highest weed control efficiency, maximum length of panicle?1, number of panicle (m2), and 1000-grain weight and grain yield of 30.40 and 32.60 q ha?1 were recorded with two hand weedings which was at par with Butachlor @ 1.0 kg ha?1 fb one hand weeding over rest of the weed management practices.  相似文献   
6.
ABSTRACT

The present studies were conducted to evaluate the effect of different nutrient management practices under two tillage options in wheat. The experiments were laid out in split-plot design with a combination of two varieties (WH 1105 and HD 2967) and two tillage options (Conventional and No tillage) in the main plot and six precision nutrient management practices [absolute control, site-specific nutrient management with Nutrient Expert for wheat (SSNM-NE)(170 kg nitrogen (N)/ha), SSNM NE+GreenSeeker (GS)(153/158 N kg/ha), N120 (120 kg N/ha) before irrigation, N120 after irrigation and N Rich (180 kg N/ha)] in subplot replicated thrice. The grain yield and quality characters in no tillage (NT) and conventional tillage (CT) were similar but agronomic efficiency was higher in NT. Both the varieties (WH 1105 and HD 2967) gave similar grain yield and quality. Wheat variety WH 1105 recorded significantly higher sodium dodecyl sulfate sedimentation (SDS) and gluten index. The treatment SSNM NE+GS had resulted in 107.1% higher grain yield than no nitrogen control but similar to enriched N plot (180 kg N/ha). The grain protein, SDS and gluten index in need-based nutrient management (SSNM+GS) treatment were found to be similar as recorded in SSNM-NE (170 kgN/ha) and N enriched plot (180 kg N ha?1). The agronomic efficiency and recovery efficiency in SSNM+GS were also better than SSNM NE.  相似文献   
7.

Background

Salinity is one of the most severe and widespread abiotic stresses that affect rice production. The identification of major-effect quantitative trait loci (QTLs) for traits related to salinity tolerance and understanding of QTL × environment interactions (QEIs) can help in more precise and faster development of salinity-tolerant rice varieties through marker-assisted breeding. Recombinant inbred lines (RILs) derived from IR29/Hasawi (a novel source of salinity) were screened for salinity tolerance in the IRRI phytotron in the Philippines (E1) and in two other diverse environments in Senegal (E2) and Tanzania (E3). QTLs were mapped for traits related to salinity tolerance at the seedling stage.

Results

The RILs were genotyped using 194 polymorphic SNPs (single nucleotide polymorphisms). After removing segregation distortion markers (SDM), a total of 145 and 135 SNPs were used to construct a genetic linkage map with a length of 1655 and 1662 cM, with an average marker density of 11.4 cM in E1 and 12.3 cM in E2 and E3, respectively. A total of 34 QTLs were identified on 10 chromosomes for five traits using ICIM-ADD and segregation distortion locus (SDL) mapping (IM-ADD) under salinity stress across environments. Eight major genomic regions on chromosome 1 between 170 and 175 cM (qSES1.3, qSES1.4, qSL1.2, qSL1.3, qRL1.1, qRL1.2, qFWsht1.2, qDWsht1.2), chromosome 4 at 32 cM (qSES4.1, qFWsht4.2, qDWsht4.2), chromosome 6 at 115 cM (qFWsht6.1, qDWsht6.1), chromosome 8 at 105 cM (qFWsht8.1, qDWsht8.1), and chromosome 12 at 78 cM (qFWsht12.1, qDWsht12.1) have co-localized QTLs for the multiple traits that might be governing seedling stage salinity tolerance through multiple traits in different phenotyping environments, thus suggesting these as hot spots for tolerance of salinity. Forty-nine and 30 significant pair-wise epistatic interactions were detected between QTL-linked and QTL-unlinked regions using single-environment and multi-environment analyses.

Conclusions

The identification of genomic regions for salinity tolerance in the RILs showed that Hasawi possesses alleles that are novel for salinity tolerance. The common regions for the multiple QTLs across environments as co-localized regions on chromosomes 1, 4, 6, 8, and 12 could be due to linkage or pleiotropic effect, which might be helpful for multiple QTL introgression for marker-assisted breeding programs to improve the salinity tolerance of adaptive and popular but otherwise salinity-sensitive rice varieties.
  相似文献   
8.

Background

Fixed arrays of single nucleotide polymorphism (SNP) markers have advantages over reduced representation sequencing in their ease of data analysis, consistently higher call rates, and rapid turnaround times. A 6 K SNP array represents a cost-benefit “sweet spot” for routine genetics and breeding applications in rice. Selection of informative SNPs across species and subpopulations during chip design is essential to obtain useful polymorphism rates for target germplasm groups. This paper summarizes results from large-scale deployment of an Illumina 6 K SNP array for rice.

Results

Design of the Illumina Infinium 6 K SNP chip for rice, referred to as the Cornell_6K_Array_Infinium_Rice (C6AIR), includes 4429 SNPs from re-sequencing data and 1571 SNP markers from previous BeadXpress 384-SNP sets, selected based on polymorphism rate and allele frequency within and between target germplasm groups. Of the 6000 attempted bead types, 5274 passed Illumina’s production quality control. The C6AIR was widely deployed at the International Rice Research Institute (IRRI) for genetic diversity analysis, QTL mapping, and tracking introgressions and was intensively used at Cornell University for QTL analysis and developing libraries of interspecific chromosome segment substitution lines (CSSLs) between O. sativa and diverse accessions of O. rufipogon or O. meridionalis. Collectively, the array was used to genotype over 40,000 rice samples. A set of 4606 SNP markers was used to provide high quality data for O. sativa germplasm, while a slightly expanded set of 4940 SNPs was used for O. sativa X O. rufipogon populations. Biparental polymorphism rates were generally between 1900 and 2500 well-distributed SNP markers for indica x japonica or interspecific populations and between 1300 and 1500 markers for crosses within indica, while polymorphism rates were lower for pairwise crosses within U.S. tropical japonica germplasm. Recently, a second-generation array containing ~7000 SNP markers, referred to as the C7AIR, was designed by removing poor-performing SNPs from the C6AIR and adding markers selected to increase the utility of the array for elite tropical japonica material.

Conclusions

The C6AIR has been successfully used to generate rapid and high-quality genotype data for diverse genetics and breeding applications in rice, and provides the basis for an optimized design in the C7AIR.
  相似文献   
9.
ABSTRACT

Rice-Wheat rotation is the dominant land use in the state of Punjab, resulting in over exploitation of ground water resources. Thus, it is necessary to evaluate other land uses that requires less water and are sustainable. The present investigation was planned with four land uses viz., fallow (FLU), rice-wheat (ALU), grasses (GLU) and pear (PLU) with respect to their effect on soil organic carbon and soil physical characteristics in surface and subsurface depth in district Ludhiana, Punjab. The soil organic carbon (SOC) content was higher by 10, 30.9 and 24.9% under rice-wheat, grasses, and pear than that under fallow. The grasses showed higher soil moisture characteristics curve (SMCC) and lower bulk density (Db) than that under rice-wheat. The larger mean weight diameter (MWD) were observed under pear, grasses and fallow than that under rice-wheat by 0.21, 0.51 and 0.41 mm, respectively. The saturated hydraulic conductivity (Ks) was higher in magnitude by 56.1, 55.4 and 28%, respectively under PLU, GLU and FLU over ALU. Of the evaluated land uses, pear and grasses proved to be more sustainable by retaining more moisture, maintaining better soil physical characteristics and SOC under semiarid irrigated conditions in the state on long term gradual response.  相似文献   
10.
In the past five decades, constant research has been directed towards yield improvement in pigeonpea resulting in the deployment of several commercially acceptable cultivars in India. Though, the genesis of hybrid technology, the biggest breakthrough, enigma of stagnant productivity still remains unsolved. To sort this productivity disparity, genomic research along with conventional breeding was successfully initiated at ICRISAT. It endowed ample genomic resource providing insight in the pigeonpea genome combating production constraints in a precise and speedy manner. The availability of the draft genome sequence with a large‐scale marker resource, oriented the research towards trait mapping for flowering time, determinacy, fertility restoration, yield attributing traits and photo‐insensitivity. Defined core and mini‐core collection, still eased the pigeonpea breeding being accessible for existing genetic diversity and developing stress resistance. Modern genomic tools like next‐generation sequencing, genome‐wide selection helping in the appraisal of selection efficiency is leading towards next‐generation breeding, an awaited milestone in pigeonpea genetic enhancement. This paper emphasizes the ongoing genetic improvement in pigeonpea with an amalgam of conventional breeding as well as genomic research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号