首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2185篇
  免费   213篇
林业   183篇
农学   105篇
基础科学   18篇
  403篇
综合类   75篇
农作物   136篇
水产渔业   295篇
畜牧兽医   925篇
园艺   59篇
植物保护   199篇
  2023年   38篇
  2022年   50篇
  2021年   122篇
  2020年   149篇
  2019年   154篇
  2018年   168篇
  2017年   136篇
  2016年   148篇
  2015年   76篇
  2014年   126篇
  2013年   142篇
  2012年   181篇
  2011年   147篇
  2010年   100篇
  2009年   84篇
  2008年   88篇
  2007年   89篇
  2006年   81篇
  2005年   54篇
  2004年   49篇
  2003年   51篇
  2002年   35篇
  2001年   23篇
  2000年   21篇
  1999年   14篇
  1998年   9篇
  1997年   5篇
  1996年   7篇
  1995年   2篇
  1994年   5篇
  1991年   5篇
  1990年   2篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1985年   3篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1981年   3篇
  1979年   1篇
  1977年   1篇
  1976年   3篇
  1974年   2篇
  1973年   3篇
  1972年   2篇
  1970年   1篇
  1969年   2篇
  1967年   2篇
  1954年   1篇
排序方式: 共有2398条查询结果,搜索用时 15 毫秒
1.
Environmental conditions influence phenology and physiological processes of plants. It is common for maize and sorghum to be sown at two different periods: the first cropping (spring/summer) and the second cropping (autumn/winter). The phenological cycle of these crops varies greatly according to the planting season, and it is necessary to characterize the growth and development to facilitate the selection of the species best adapted to the environment. The aim of this study was to characterize phenological phases and physiological parameters in sorghum and maize plants as a function of environmental conditions from the first cropping and second cropping periods. Two parallel experiments were conducted with both crops. The phenological characterization was based on growth analyses (plant height, leaf area and photoassimilate partitioning) and gas exchange evaluations (net assimilation rate, stomatal conductance, transpiration and water-use efficiency). It was found that the vegetative stage (VS) for sorghum and maize plants was 7 and 21 days, respectively, longer when cultivated during the second cropping. In the first cropping, the plants were taller than in the second cropping, regardless of the crop. The stomatal conductance of sorghum plants fluctuated in the second cropping during the development period, while maize plants showed decreasing linear behaviour. Water-use efficiency in sorghum plants was higher during the second cropping compared with the first cropping. In maize plants, in the second cropping, the water-use efficiency showed a slight variation in relation to the first cropping. It was concluded that the environmental conditions as degree-days, temperature, photoperiod and pluvial precipitation influence the phenology and physiology of both crops during the first and the second cropping periods, specifically cycle duration, plant height, leaf area, net assimilation rate, stomatal conductance and water-use efficiency, indicating that both crops respond differentially to environmental changes during the growing season.  相似文献   
2.
Landscape Ecology - Several case studies investigated the role of ecosystem services in participatory planning processes. However, no systematic study exists that cuts across a large number of...  相似文献   
3.
4.
5.
In this study, we evaluated the effects of including cassava wastewater in the diet on the feeding behavior of feedlot lambs in 35 male uncastrated Santa Inês × Dorper crossbred lambs at an approximate age of 3 months, with an average live weight of 20.0?±?3.4 kg. Diets were formulated with hay of cassava shoots (roughage) and a concentrate based on corn and soybean, with a roughage:concentrate ratio of 50:50, plus inclusion of cassava wastewater at the levels of 0, 12, 24, 36, or 48 g/kg of the total diet. Feeding behavior was evaluated between the 46th and 52nd days of the experiment. Increasing cassava wastewater levels in the diet reduced (P?<?0.05) the intakes (kg/day) of dry matter and neutral detergent fiber as well as the efficiency of rumination (g/cud and g/h) of dry matter and neutral detergent fiber. The other behavioral parameters were not affected by wastewater inclusion in the diet. Therefore, the inclusion of up to 48 g/kg of cassava wastewater on fresh matter of diets is not recommended for feedlot lambs.  相似文献   
6.
7.
So far, rumination has been used as a proxy for monitoring dairy cow health at farm level. However, investigating its genetic aspects as well as its correlation with other important productive traits may turn this management tool into a new informative selection criterion. However, scientific evidences on genetic correlation among rumination time (RT) and milk production and milk composition are still scarce. Therefore, the objective of this study was to estimate the heritability of RT across three lactation phases and its genetic correlation with milk production, milk composition and somatic cell count (SCC). Results of our study showed that heritability for RT was 0.34 and was constant across lactation. The mean genetic correlations between RT and milk production and composition traits were 0.07 (milk production), ?0.07 (protein yield), ?0.31 (fat yield), and ?0.32 (fat/protein ratio). The mean genetic correlation between RT and the SCC was 0.05.  相似文献   
8.
Effects of adding different concentrations of melatonin (10?7, 10?9 and 10?11 M) to maturation (Experiment 1; Control, IVM  + 10?7, IVM  + 10?9, IVM  + 10?11) and culture media (Experiment 2; Control, IVC  + 10?7, IVC  + 10?9, IVC  + 10?11) were evaluated on in vitro bovine embryonic development. The optimal concentration of melatonin (10?9 M) from Experiments 1–2 was tested in both maturation and/or culture media of Experiment 3 (Control, IVM  + 10?9, IVC  + 10?9, IVM /IVC  + 10?9). In Experiment 1, maturated oocytes from Control and IVM  + 10?9 treatments showed increased glutathione content, mitochondrial membrane potential and percentage of Grade I blastocysts (40.6% and 43%, respectively). In Experiment 2, an increase in the percentage of Grade I blastocysts was detected in IVC  + 10?7 (43.5%; 56.7%) and IVC  + 10?9 (47.4%; 57.4%). Moreover, a lower number and percentage of apoptotic cells in blastocysts were observed in the IVC  + 10?9 group compared to Control (3.8 ± 0.6; 3.6% versus 6.1 ± 0.6; 5.3%). In Experiment 3, the IVC  + 10?9 treatment increased percentage of Grade I blastocysts with a lower number of apoptotic cells compared to IVM /IVC  + 10?9 group (52.6%; 3.0 ± 0.5 versus 46.0%; 5.4 ± 1.0). The IVC  + 10?9 treatment also had a higher mRNA expression of antioxidant gene (SOD 2) compared to the Control, as well as the heat shock protein (HSPB 1) compared to the IVM  + 10?9. Reactive oxygen species production was greater in the IVM /IVC  + 10?9 treatment group. In conclusion, the 10?9 M concentration of melatonin and the in vitro production phase in which it is used directly affected embryonic development and quality.  相似文献   
9.
In silvopastoral (SP) systems, forage responses depend on the microenvironment in which the plants develop. Our objective was to evaluate canopy and tillering characteristics of shaded 'Marandu' palisadegrass [Brachiaria brizantha (Hochst A Rich) Stapf, syn. Urochloa brizantha] under continuous stocking in a SP system. Treatments were one full sun (FS) and three shaded systems (silvopasture, SP) corresponding to distances from tree groves: 7.5 m north (SP1), and 15 m (SP2) and 7.5 m south (SP3) studied during two rainy seasons (Year 1 and Year 2). The tree in the SP system was Eucalyptus urograndis (hybrid of Eucalyptus grandis W. Hill ex Maiden × Eucalyptus urophylla S. T. Blake). The photosynthetic active radiation was greater in FS (923 μmol m-2 s-1), followed by SP2 (811 μmol m-2 s-1), SP1 (727 μmol m-2 s-1) and SP3 (673 μmol m-2 s-1). Forage accumulation in FS was 15% greater than the mean of SP1, SP2 and SP3 (10,663 kg DM/ha). There was no difference in net accumulation of leaf, stem and dead material, averaging 3,302, 3,420 and 4,063 kg DM/ha respectively. Leaf accumulation and accumulation rate were greater in Year 2, and leaf accumulation rate was similar among treatments (19 kg DM ha−1 day−1). Leaf proportion increased 14% from Year 1 to Year 2. Specific leaf area was greater for treatments SP1 and SP3 (193 cm2/g). Tiller population density was similar across treatments in Year 1. Shaded palisadegrass maintains leaf productivity similar to FS under continuous stocking in an SP system.  相似文献   
10.
Purpose

Grazing livestock has strong impact on global nitrous oxide (N2O) emissions by providing N sources through excreta. The scarcity of information on factors influencing N2O emissions from sheep excreta in subtropical ecosystems such as those of Southern Brazil led us to conduct field trials in three different winter pasture seasons on an integrated crop–livestock system (ICL) in order to assess N2O emission factors (EF-N2O) in response to variable rates of urine and dung.

Materials and methods

The equivalent urine-N loading rates for the three winter seasons (2009, 2010, and 2013) ranged from 96 to 478 kg ha?1, and the dung-N rates applied in 2009 and 2010 were 81 and 76 kg ha?1, respectively. Air was sampled from closed static chambers (0.20 m in diameter) for approximately 40 days after excreta application and analyzed for N2O by gas chromatography.

Results and discussion

Soil N2O-N fluxes spanned the ranges 4 to 353 μg m?2 h?1 in 2009, ??47 to 976 μg m?2 h?1 in 2010, and 46 to 339 μg m?2 h?1 in 2013. Urine addition resulted in N2O-N peaks within for up to 20–30 days after application in the 3 years, and the strength of the peaks was linearly related to the N rate used. Emission factors of N2O (EF-N2O, % of N applied that is emitted as N2O) of urine ranged from 0.06 to 0.34% and were essentially independent of N rate applied. By considering a ratio of N excreted by urine and dung of 60:40, a single combined excretal EF-N2O of 0.14% was estimated.

Conclusions

Our findings showed higher mean EF-N2O for sheep urine than that for dung (0.21% vs 0.03%), irrespective of the occurrence or not of urine patches overlap. This value is much lower than default value of 1% of IPCC’s Tier 1 and reinforces the needs of its revision.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号