首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
林业   1篇
园艺   1篇
植物保护   1篇
  2019年   1篇
  2016年   1篇
  2011年   1篇
排序方式: 共有3条查询结果,搜索用时 25 毫秒
1
1.
Landscape Ecology - Several case studies investigated the role of ecosystem services in participatory planning processes. However, no systematic study exists that cuts across a large number of...  相似文献   
2.
Citrus canker is caused by Xanthomonas citri subsp. citri. Bacterial biofilm formation is important in the development of this disease because it is a factor in epiphytic bacterial survival on leaves and in infection. N‐acetylcysteine (NAC), in addition to having antibacterial properties, reduces biofilm formation by a variety of bacteria and was therefore tested for impairing biofilm formation by X. citri. Copper is currently the antimicrobial compound most commonly applied in agriculture to control citrus canker. Therefore, this study also evaluated a possible synergistic effect between NAC and copper to improve the strategy for controlling this phytopathogen. NAC was found to decrease biofilm formation, the production of extracellular polysaccharides and bacterial stickiness. Motility was also affected in the presence of NAC. The best combination of NAC and copper for controlling X. citri was application of NAC followed by copper 48 h later. The concentrations of 6 mg mL?1 of NAC and 3·5 μg mL?1 of copper were able to kill X. citri. NAC inhibited the epiphytic behaviour of X. citri on leaves, altering cell growth and the bacterial ability to form biofilms. The addition of copper to cells previously treated with NAC enhanced its bactericidal activity. In conclusion, NAC has antibacterial properties against X. citri, interfering with bacterial growth, motility and biofilm formation. Under epiphytic conditions, NAC made the cells more susceptible to copper by affecting X. citri biofilm formation. This study opens new possibilities for the use of NAC in combination with copper, possibly resulting in more sustainable management of citrus canker.  相似文献   
3.
The study compares two product strategies—chips versus firewood—and two technological levels—manual versus mechanized—as applied to the thinning of walnut agroforestry plantations, established on ex-arable land. Such plantations are widespread all across Europe, and their establishment was subsidized under the provisions of EU Directive 2080/90, and of regional grant schemes. Field test data were used to build a simple deterministic model for estimating thinning productivity and cost under varying work and economic conditions. This model can assist prospective users when checking the profitability of an operation, or when assessing the competitiveness of alternative options. Removing nurse alder from young walnut plantations yields between 25 and 50 t of fresh biomass per hectare and is crucial to the good development of the stand. The study shows that the removal of nurse alder from walnut plantations is economically viable, and it can also offer some profits if stand and market conditions are favourable. As a rule, the average DBH of removal trees should not be smaller than 12 cm. Best results are obtained with mechanized harvesting, which does not seem to cause heavier stand and soil damage than manual harvesting. Manual harvesting is preferable only if the annual utilization of machinery is very low, and in this case it should be geared to firewood production. The manual whole-tree harvesting (WTH) method used in this study offers the lowest performance under all conditions, and should be replaced with some other manual alternative to WTH. Mechanized WTH offers a significant cost reduction over mechanized short-wood (SWS) harvesting, but this difference is still rather limited: hence, other parameters come into play when deciding what system to apply, and namely product price and mass output. In this respect, one also has to consider the cost of managing the harvesting residue, and that of fertilizing, if soil nutrient depletion is to be feared.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号