首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
  国内免费   4篇
  4篇
综合类   3篇
园艺   1篇
植物保护   2篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  1981年   1篇
排序方式: 共有10条查询结果,搜索用时 46 毫秒
1
1.
运用温室葡萄水热平衡观测资料,分析了东北日光温室葡萄的能量平衡和能量分量日变化、生育期变化以及分配规律,同时也分析了潜热通量(λET)对环境因子的响应。结果表明:水热通量各分量在整个生育期日变化总体上呈现为单峰趋势,净辐射(Rn)的峰值最大为618.75 W·m-2λET峰值最大为242.73 W·m-2,感热通量(H)峰值最大为327.93 W·m-2;在新梢生长期,白天λET较小,为34.55 W·m-2,随着生育期推进,λET逐渐增大,在果实着色成熟期达到最大值(78.49 W·m-2)之后减小;H在各生育期能量中均占了绝大部分;白天潜热通量占净辐射的比例(λET/Rn)在新梢生长期最小,为25.28%,在果实着色成熟期最大,为44.17%;感热通量占净辐射比例(H/Rn)整个生育期几乎都达50%以上,土壤热通量占净辐射比例(G/Rn)相对较小,变化范围为4.46~12.32 W·m-2;在整个生育期能量比率大小依次为H/Rn>λET/Rn>G/Rn。在不同生育阶段瞬时尺度上,Rn是影响潜热变化最主要的气象因子,R2高达0.88。在日尺度上,各气象因子对潜热通量的影响在逐渐变弱,相对湿度(RH)与λET相关系数仅为0.28。但无论从瞬时尺度还是日尺度,Rn都是影响潜热通量最主要的气象因子。各气象因子对潜热通量的影响大小依次为:Rn>VPD>Ta>RH。  相似文献   
2.
主要农艺性状的表型评价是青萝卜育种的重要依据。对48 份青萝卜种质资源的33 个主要农艺性状进行变异分析、相关性分析、主成分分析和聚类分析,结果表明:9 个数量性状均有不同程度的变异,单株质量变异系数最大,为32.46%,叶宽变异系数最小,为14.67%;以肉质根为主的典型农艺性状间存在复杂的相关性,相关性极显著的有29 对,相关性显著的有8 对;从33 个农艺性状提取出9 个主成分,累计贡献率为78.937%,基本反映了青萝卜地上部和地下部重要农艺性状信息;在平方欧式距离系数为8.5 时,可将48 份供试青萝卜种质资源分为3 个组群,第Ⅰ组群包括33 份材料,主要特征是株高、开展度、叶长、叶宽和叶片数在3 组中最小,第Ⅱ组群包括14 份材料,主要特征为株型、叶片大小中等,第Ⅲ组群只有1份材料,其株高、开展度、单株质量和单根质量在3 组中最大。  相似文献   
3.
为了探究我国东北地区日光温室种植条件下葡萄的液流特性及主要影响因素,对温室主棚(保温)与副棚(无保温措施)葡萄全生育期液流、生长指标及环境指标进行动态监测和系统分析。结果表明:(1)温室主棚与副棚葡萄液流的日内变化呈现单峰或多峰变化趋势,峰值出现在12∶00左右,液流基本停止时间为21∶00,夜间仍有微弱液流产生。不同月份液流强度不同,8月份液流速率最大,其次为6、10月。(2)全生育期下,主棚内相对液流速率(SFR)主要受光能驱动的影响,光合有效辐射(PAR)是其主要影响因子,副棚的相对液流速率主要受到光能驱动和气孔导度的综合影响,饱和水汽压亏缺(VPD)和PAR均是其主要影响因子。气象因子与SFR响应呈现明显的时间变异性,其中8月份SFR与环境因子的相关性最为密切。(3)主棚的相对液流与影响因子的决定系数均大于副棚,且双因子组合模型预测精度高于单因素。(4)不同种植环境下葡萄的夜间液流有一定的占比,主棚的夜间液流占比略小于副棚的夜间液流占比,随着生育期的推进,葡萄植株夜间液流占比呈现先减小后增大的趋势。  相似文献   
4.
滴灌下限对日光温室葡萄生长、产量及根系分布的影响   总被引:1,自引:0,他引:1  
【目的】 探究自动控制灌溉条件下灌水水平对葡萄生长发育与水分消耗的影响,为温室自动灌溉条件下葡萄水分管理提供决策依据。 【方法】 以3年生‘玫瑰香’为研究对象,利用CR1000数据采集器、土壤水分传感器和电磁阀联合自动控制灌水,设置8个不同的灌水下限(分别为田间持水率的50%、55%、60%、65%、70%、75%、80%和85%),灌水上限均为田间持水率的90%,研究不同灌水下限对温室葡萄地上部和地下部生物量、产量、水分利用等的影响。 【结果】 当灌水下限低于田间持水率的75%时,随着灌水下限的提高,新梢长度、新梢茎粗以及叶面积指数均显著增加,当灌水下限超过田间持水率的75%时,新梢的生长受到不同程度地抑制;葡萄根系在0-60 cm土层中均有分布,但主要分布在0-30 cm土层中,该层的根体积以及根系表面积分别占总根系的75%-89%、77%-83%。在葡萄根系分布最为集中的0-10 cm和10-20 cm土层中,各根系指标均随着灌水下限的提高呈先增加后减少的趋势,其中当灌水下限为田间持水率的75%时,各根系指标均最大。当灌水量低于6 000 m 3·hm -2时,各根系指标均随着灌水量的增加而增大,当灌水量达到7 000 m 3·hm -2时,各根系指标均出现下降或增长缓慢的趋势;当灌水下限是田间持水率的75%时,葡萄的产量和水分利用效率均为最高,分别达到32 270.31 kg·hm -2、4.85 kg·m -3【结论】 综合考虑葡萄新梢生长、根系分布、产量和水分利用等因素,滴灌条件下葡萄水分管理的最佳土壤水分区间为田间持水率的75%-90%,可以作为该种植模式下适宜的灌溉控制指标的推荐值。  相似文献   
5.
为探索在东北寒区温室种植环境下温室葡萄蒸散发(Evapotranspiration,ET)规律与不同时间尺度ET转化方法,该研究对温室葡萄蒸散过程及环境因子进行2 a的连续监测,利用3种尺度提升方法(蒸发比法、改进蒸发比法、作物系数法)对葡萄ET进行了瞬时到日以及日到全生育期的时间尺度提升。结果表明:利用蒸发比法、改进蒸发比法和作物系数法进行ET瞬时到日尺度提升的关键参数在08:00-16:00变化平稳,平均值分别为0.54、0.52和0.76,变异系数平均值分别为0.11、0.10和0.09。采用3种日尺度提升方法对葡萄ET进行瞬时到日尺度提升时,基于不同评价指标确定的最优模型和最佳尺度提升时间均不一致。进一步,利用综合评价指标确定了4个生育期的最佳模拟时刻,基于该时刻进行瞬时到日尺度提升模拟,模拟精度以蒸发比法最高,作物系数法最低,改进蒸发比法居中。2020和2021年蒸发比法模拟的R2分别达到0.92和0.89,相对均方根误差仅为20.23%和21.49%。利用不同生育期的日蒸腾进行生育期尺度ET提升,其中果实膨大期效果最好,基于3种方法利用该生育期日数据进行全生育期ET模拟,模拟精度仍然以蒸发比法最高,作物系数法最低,改进蒸发比法居中。蒸发比法在2020和2021年的ET模拟绝对误差仅为1.8和7.4 mm,相对误差仅为0.68%和2.73%。研究为东北地区温室葡萄的水分管理提供科学依据。  相似文献   
6.
深埋秸秆量和滴灌量对温室番茄品质、产量及IWUE的影响   总被引:2,自引:0,他引:2  
为了优化东北寒区温室番茄生产中适宜深埋秸秆量和滴灌量,为该地区温室番茄产业的可持续发展提供科学依据,探讨了深埋秸秆量和膜下滴灌量对温室番茄品质、产量以及灌溉水利用效率(IWUE)的影响。通过温室小区试验,深埋秸秆量设置4个水平:0kg·hm-2(S0)、1.5×104kg·hm-2(S1)、3×104kg·hm-2(S2)、4.5×104kg·hm-2(S3);滴灌下限以田间持水量θ为基数,设置4个水平:50%θ田(W1)、60%θ田(W2)、70%θ田(W3)、80%θ田(W4),共16个处理。采用主成分分析法对番茄品质进行综合评价,以主成分综合得分量化番茄的品质指标;采用熵权法对番茄的品质、产量、灌溉水利用效率(IWUE)进行赋权,进而通过TOPSIS法对各处理下温室番茄进行综合评价。深埋秸秆量和膜下滴灌量均对番茄品质产生影响,主成分分析法对番茄品质综合评价的结果得出S1W2、S2W4为品质最优的两个处理;产量最高的S1W2处理相较于S2W4处理增产达18.7%,而且S1W2处理灌溉水利用效率达到峰值为62.54kg·m-3。TOPSIS综合评价的结果表明S1W2处理为综合效益最高的处理。番茄生育期内滴灌灌水下限控制在田间持水量的60%(整个生育期的灌水量为183.54mm),深埋段状玉米秸秆量为1.5×104kg·hm-2,在提高番茄的综合品质的同时又可以使产量和IWUE处于较高水平,从而获得最大的综合效益。  相似文献   
7.
辽宁省玉米地水分盈亏时空分布特征及灌溉模式分区研究   总被引:6,自引:3,他引:3  
根据不同区域农作物需水规律和水资源供需状况,对区域内干旱区域类型、水分盈亏特性与干旱发生频率等进行综合分析和科学区划,对于提高整个地区(流域)农作物水分利用效率和水资源高效利用具有重要意义。该文基于辽宁省27个气象站1955—2014年逐日气象数据和玉米生长发育资料,对辽宁省不同玉米种植区域玉米生育期的需水过程、需水量、灌溉需水量、水分盈亏指数(crop water surplus deficit index,CWSDI)、干旱发生频率等的时空分布特征进行深入研究,得到以下结论:辽宁省不同区域玉米逐月需水量均呈现单峰变化趋势,7月需水量最大,全省生育期总需水量在335~391 mm之间;不同水文年玉米需水亏缺量在0~220 mm之间;CWSDI和干旱发生频率在全省的空间分布规律类似,综合两指标的数值分布特征,将辽宁省玉米灌区划分为干旱区和易旱区2种类型,并结合不同水文年型玉米灌溉制度,将辽宁省玉米种植区划分为7种灌溉模式。该研究成果可以为辽宁省区域农业用水区划与管理提供理论依据。  相似文献   
8.
深埋秸秆条件下温室番茄根层土壤温度变化特征   总被引:1,自引:0,他引:1  
为明确温室番茄在膜下滴灌条件下深埋秸秆量对地温影响的综合效应,设置了0 kg/hm~2(CK)、1.5万kg/hm~2(T1)、3.0万kg/hm~2(T2)、4.5万kg/hm~2(T3)4种不同秸秆量处理,通过无线土壤墒情监测系统对番茄生长过程中距垄台表面15、30、45 cm处地温与土壤含水率动态变化进行实时监测,研究深埋秸秆量和土壤水分对温室番茄在膜下滴灌条件下不同深度土壤温度的影响特征。结果表明,在膜下滴灌条件下温室番茄深埋秸秆处理能够有效提高埋设秸秆后春夏茬番茄的地温和土壤含水率,各层土壤地温平均升高0.29~0.93℃,其中T1处理含水率最高,为25.14%;T3处理增温幅度最大,为0.93℃;而秋冬茬番茄土壤地温有降低的趋势,但不同秸秆还田量处理土壤含水率高于对照,各层土壤地温平均下降0.04~0.91℃,其中T2处理含水率最高,为27.42%,且降温幅度最小,为0.06℃。表明深埋秸秆量对土壤温度日变幅与土壤深度的相关性有一定影响,其影响春夏茬略小于秋冬茬。  相似文献   
9.
为了探明东北冷寒区设施环境下,葡萄液流特征及其与温室内环境因子之间的响应特征,对葡萄液流速率以及环境因子进行连续监测和系统分析,结果表明:葡萄日内液流和全生育期逐日蒸腾均呈现单峰变化趋势,日内液流峰值出现在10:30-13:00之间,在液流最为旺盛的8月,其峰值达406.32g/h。葡萄全生育期日蒸腾量在8月变化相对最为剧烈,日均蒸腾量超过4 mm/d。液流速率与光合有效辐射(photosynthetically active radiation,PAR),气温、水汽压亏缺(vapor pressuredeficit,VPD)及实际水汽压均表现为显著正相关(P0.01),与相对湿度表现为显著负相关(P0.01)。瞬时液流速率与日蒸腾最主要的影响因子是PAR与VPD,月尺度液流最主要影响因子在PAR与蒸腾整合变量(variableof transpiration,VT)之间变化。全生育期液流最主要的影响因子是PAR与VT,但其决定系数随研究时间尺度的增加而降低。不同气象因子与液流之间存在明显的时滞效应,PAR的启动时间及停止时间均提前于液流,到达高峰时间滞后于液流,时滞时间最长为1.5 h。VPD整体滞后于液流。  相似文献   
10.
为探究中国东北地区日光温室种植条件下滴灌水肥一体化对葡萄生长、产量和水肥利用效率的影响,以3年生的"醉金香"葡萄为供试材料,2017-2019年在日光节能温室中开展了水肥一体化试验。试验设置3个灌水水平(W1~W3):W1~W3灌水控制下限分别为田间持水率的50%、60%、70%,灌水上限统一为田间持水率的90%,设置3个施肥水平:低肥F1(60%CK)、中肥F2(75%CK)、高肥F3(90%CK)和对照(CK,灌水控制上下限为田间持水率的80%~90%、施肥量为N-P2O5-K2O为260-119-485 kg/hm2),共计10个处理。结果表明:1)果实膨大期是水肥一体化对新梢生长调控最为主要的时期,其与开花坐果期也是利用水肥对葡萄叶面积指数进行调控最关键的时期。对于生长指标而言,W3F1、W2F3、W2F2等处理均为相对于CK的正向处理,即优于该处理或与该处理无显著性差异(P>0.05)。2)W3F2、W3F1、W2F3、W3F3等处理的叶片净光合速率和蒸腾速率均是相对于CK的正向处理。瞬时水分利用效率变化范围在1.60~3.74 μmol/(mmol)之间,W2F2、W3F1、W3F3均为相对于CK的正向处理。3)灌水和水肥交互作用对产量的影响达到极显著水平(P<0.01)。W3F2、W3F1、W3F3、W2F3处理为相对CK的产量正向处理,过高的灌溉、施肥水平会导致葡萄水分利用效率和肥料偏生产力的显著降低。W1F2、W3F1处理下,水分利用效率和肥料偏生产力分别达到最大值。综合考虑,W2F3处理可在保证肥料偏生产力未产生下降的同时,生理指标、产量、水分利用效率达到与最优水平无显著性差异,推荐作为该研究最优处理,即灌水控制上下限为田间持水率的60%和90%,施肥量为CK的90%,可在节水21.19%~23.27%,节肥7.52%的基础上,实现稳产型温室葡萄生产。研究为温室葡萄,特别是中国东北冷寒区温室葡萄水肥一体化下最优灌溉施肥模式提供参考。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号