首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
  国内免费   5篇
基础科学   1篇
  7篇
  2021年   3篇
  2020年   4篇
  2019年   1篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
黑土区田块尺度下地形影响作物长势机理分析   总被引:1,自引:0,他引:1  
为揭示作物长势及水肥运移的空间分异规律,探究田块尺度内作物长势与地形变化的关系,以东北典型黑土区东兴农机合作社为研究区,沿南北垄向提取高精度数字高程模型(Digital elevation model,DEM)与归一化植被指数(Normalized differential vegetation index,NDVI)信息,构建地形指标,分析NDVI的空间变异性。结果表明,坡型凸凹程度越明显,NDVI的空间变异性越大;同类坡型中阴坡NDVI的空间变异性与坡型凸凹程度呈负相关;坡度在±0.03范围内,作物长势好,空间变异性低;以坡度绝对值高于0.04的坡度均值与其对应直线距离所占整条直线的比值作为自变量,构建多元逐步回归模型,进行回归分析,可以解释大豆NDVI决定系数为0.965 2、高粱NDVI决定系数为0.888 3的空间变异性。不同地理空间的地形与成土母质差异显著,通过分析研究区内地形对作物长势的影响规律,可为田块尺度地形的分析提供借鉴,有助于指导农户合理地进行水肥分配。  相似文献   
2.
精准管理分区是实施精准农业的重要环节,对分区结果的时空变化分析有利于因地制宜制定田间精准管理措施。该研究以黑龙江省友谊农场种植玉米作物的田块为研究区,获取多年玉米出苗期Sentinel-2 A卫星遥感影像,提取归一化差异植被指数(Normalized Difference Vegetation Index, NDVI),运用面向对象分割的方法进行精准管理分区,通过空间转移矩阵方法表述研究区分区格局变化情况,并对精准管理分区时空格局成因进行探究。结果表明:研究区在2017-2020年6月上旬精准管理分区格局相似;分区后NDVI、高程、坡度的变异系数分别降低了70.690%~76.420%、42.857%~57.143%、30.723%~34.940%;同一条垄线上,4期NDVI最高值均位于阳坡,且坡顶至阴坡坡底NDVI值逐渐降低;作物生长初期地形影响土壤水分及温度分布从而影响作物长势及精准管理分区格局。研究结果为精准管理分区与精准施肥、施药等田间变量管理措施的衔接提供参考。  相似文献   
3.
基于SOM和NDVI的黑土区精准管理分区对比   总被引:4,自引:4,他引:0  
根据土壤养分的空间异质性对耕地进行分区是实施变量施肥管理的关键环节,施肥的变量管理将减轻黑土区农业面源污染和土壤退化问题。该文以典型黑土区黑龙江省海伦市某合作社地块为研究对象,利用SPOT-6遥感影像提取归一化植被指数(normalized differential vegetation index, NDVI)、插值计算土壤有机质(soil organic matter,SOM),结合数字高程模型(digital elevation model,DEM),应用面向对象的分割方法,对研究地块进行分区,并应用莫兰(Morans)指数对分区结果进行评价,以期对比研究基于SOM空间插值与遥感信息的分区精度。结果表明:结合4期NDVI空间信息分区的精度最高;结合SOM、DEM、NDVI空间信息进行分区的精度次之;结合地形与SOM空间信息分区精度较低;仅根据SOM空间插值进行分区的精度最低。研究结果可为黑土区农田精准管理分区输入量的选择与多尺度分区提供思路,为实施田间精准追肥提供科学依据。  相似文献   
4.
地形对漫川漫岗黑土区大豆产量的影响   总被引:2,自引:2,他引:0  
为研究黑土区田块尺度地形对大豆产量造成的影响,在海伦东兴合作社具有明显地形起伏的地块,采集大豆田间试验数据,考虑温度、太阳辐射、坡度、土壤养分等因素,运用作物生长模型DSSAT(Decision Support Systemfor Agrotechnology Transfer)模型对各样点进行参数率定及验证,得出以下结论:1)DSSAT模型的模拟产量与实际产量的相对均方根误差为7.9%,模拟结果表现为优,表明运用作物模型模拟不同地形上的产量变异具有可行性;2)地形通过影响作物生长环境因子的时空差异决定产量差异,田块尺度温度、水分和坡度是影响产量差异的主要因素;3)坡顶和坡底的产量相对较高,且产量变异性较小,阳坡虽然接收到更多的光照,却由于水分胁迫造成减产,坡底和平缓坡顶水肥保持较好,易获得高产。研究成果为田间精细管理与田块尺度耕地高效利用提供科学依据。  相似文献   
5.
基于高分5号影像的东北典型黑土区土壤分类   总被引:1,自引:1,他引:0  
高精度的土壤分类及制图结果有助于更好地制定土地环境保护和土地资源利用策略。为探究星载高光谱影像实现区域尺度高精度土壤分类及制图的可能性,该研究获取东北黑土区拜泉县、明水县共计4幅高分5号(GF-5)星载高光谱遥感影像。首先,将原始反射率数据(Original Reflectance,OR)进行包络线去除处理获得去包络线数据(Continuum Removal,CR);其次,对OR和CR进行主成分分析(Principal Component Analysis,PCA)处理,分别得到反射率主成分信息(OR-PCA)和去包络线主成分信息(CR-PCA),并在OR-PCA和CR-PCA的基础上结合地形因子(Terrain,TA)。最后,OR、CR、OR-PCA、CR-PCA、OR-PCA-TA、CR-PCA-TA分别作为输入量结合随机森林分类模型,进行土壤分类并实现数字土壤制图。结果表明:1)包络线去除法可有效地提高星载高光谱土壤分类精度,与OR相比,CR的总精度提高了5.48%,Kappa系数提高了0.12。2)PCA可有效地降低高光谱数据的冗余性,提高模型的运算效率以及分类精度;与CR作为输入量相比,CR-PCA的土壤分类总精度提高了3.67%,Kappa系数提高了0.02。3)TA的引入显著提升了土壤分类精度,以CR-PCA-TA作为输入量的土壤分类精度最高,总精度为81.61%,Kappa系数为0.72,实现了高精度的土壤分类模型及土壤制图。研究结果可为大范围、高精度的土壤分类及制图提供新的思路。  相似文献   
6.
不同降噪方式下基于高分五号影像的土壤有机质反演   总被引:2,自引:3,他引:2  
通过遥感技术预测土壤有机质(Soil Organic Matter,SOM)的空间分布是精准农业和土地资源管理研究的重要内容,与粮食安全及环境监测密切相关。该研究主要研究采用高分五号(GF-5)反演土壤有机质的最佳降噪方式。以黑龙江省典型黑土区明水县为研究对象,获取GF-5高光谱遥感影像,对影像进行不同降噪处理,包括奇异值分解(Singular Value Decomposition,SVD),离散小波变换(Discrete Wavelet Transform,DWT)及中值滤波(Median Filtering,MF)降噪。然而,分别结合二维光谱指数,应用随机森林(Random Forest,RF)方法预测不同降噪方式的SOM含量。结果表明:1)所选择的不同降噪方法中,与SOM含量的相关性由高到低依次为DWT、SVD、MF,其中,基于MF降噪后的光谱反射率与SOM含量相关性低于原始反射率与SOM含量的相关性。2)基于降噪方式下的光谱曲线更加平滑,且不同有机质含量对应的光谱曲线形状相似。3)采用DWT降噪方式,基于影像波段和光谱指数,以RF为预测模型的SOM最优反演模型精度R~2为0.69,均方根误差为2.26%。研究成果可为利用高光谱卫星数据实现大尺度范围内SOM的数字土壤制图提供参考,为实时定量监测土壤肥力变化提供依据。  相似文献   
7.
近20年农田精准管理分区施肥方法研究进展   总被引:1,自引:0,他引:1  
精准管理分区(Site Specific Management Zones,SSMZ)是精准农业中实现定时、定点、定量、定配方投入水肥药等农业生产资料的关键环节。SSMZ已经在精准农业中得到了迅速的发展与应用,该技术对于减少农业投入、提高经济效益及减轻农业面源污染具有重要意义。全面地认识SSMZ的研究现状及存在问题,有利于更好地把握SSMZ的发展动态并开展更进一步的研究。本文对国内外以SSMZ为主题的论文进行了梳理,概述了SSMZ研究中不同输入量的应用原理、数据类型、优势及局限性;其次,对现有的分区方法进行了总结归纳,最后,整理了常用的SSMZ评价方法,对不同评价方法进行分析,进行总结与展望。得到如下结论:(1)SSMZ输入量由基于空间插值映射土壤空间属性,过渡为利用遥感技术获取土壤、植被等相关信息;(2)随着大数据时代的到来,综合考虑历史土壤理化性质、成土要素、农作物时空动态、水土气生地形地貌的作用有助于提升SSMZ的精度;(3)基于近端传感器及无人机获取的密集数据的研究不断增加,田块尺度的空间信息精度高,连续性增强;(4)传统的非监督分类算法逐步被面向对象分割方法取代,分区结果更有助于指导田间管理措施;(5)用于SSMZ的评价信息以与作物生长关系密切的土壤属性或表征作物长势的参数为主。国内外对于SSMZ的关注度逐渐增加,各类SSMZ研究成果对于实现绿色农业、维护生态安全具有重要实践意义。  相似文献   
8.
基于CARS算法的不同类型土壤有机质高光谱预测   总被引:2,自引:8,他引:2       下载免费PDF全文
不同土壤类型的理化性质和光谱性质存在差异,以往研究多以高光谱反射率或光谱吸收特征建立模型,输入变量类型结构单一,往往导致土壤有机质(Soil Organic Matter,SOM)预测模型的精度不高。为提高SOM高光谱预测模型精度,该研究以黑龙江省海伦市为研究区,将不同类型土壤分别以竞争自适应重加权采样(Competitive Adaptive Reweighted Sampling,CARS)筛选的特征波段、数字高程模型(Digital Elevation Model,DEM)数据和光谱指数作为输入变量,结合随机森林(Random Forest,RF)算法建立SOM预测模型。结果表明:1)通过CARS算法筛选后,各土壤类型特征波段压缩至全波段数目的16%以下,在很大程度上降低土壤高光谱变量维度和计算复杂程度,从而提高了模型的预测能力,说明CARS算法在提取特征关键波段变量、优化模型结构方面起到重要作用;2)不同类型土壤的SOM预测精度存在差异,沼泽土的预测精度最高为0.768,性能与四分位间隔距离的比率(Ratio of Performance to InterQuartile distance,RPIQ)为3.568;黑土次之,草甸土的预测精度最低,仅0.674,RPIQ为1.848。3类土壤的RPIQ均达到1.8以上,模型具有较好的预测能力;3)局部回归预测精度最优,验证集的调整后决定系数为0.777,均方根误差(Root Mean Square Error,RMSE)为0.581%,模型验证RPIQ为2.689,模型稳定性高。该试验筛选的预测因子通过RF模型可实现SOM含量的快速预测,简化了传统复杂的程序,可为中尺度区域不同类型土壤的SOM预测提供依据,为输入量的选择提供参考。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号