首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
林业   1篇
综合类   1篇
园艺   1篇
植物保护   1篇
  2021年   2篇
  2012年   1篇
  2004年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Journal of Pest Science - Over the past three decades, highly increased whitefly (Bemisia tabaci) populations have been observed on the staple food crop cassava in eastern Africa and associated...  相似文献   
2.
3.
Context

African production landscapes are diverse, with multiple cassava cultivars grown in small patches amongst a diversity of other crops. Studies on how diverse smallholder landscapes impact herbivore pest outbreak risk have not been carried out in sub-Saharan Africa.

Objectives

Bemisia tabaci is a cryptic pest species complex that cause damage to cassava through feeding and vectoring plant-virus diseases and are known to reach very high densities in certain contexts. However, the factors driving this phenomenon are unclear.

Methods

Bemisia density data in cassava across a large number of sites representing a geographic gradient across Uganda, Tanzania and Malawi were collected. We tested whether in-field or landscape factors associated with land-use patterns underpinned Bemisia density variability and parasitism.

Results

We found the B. tabaci SSA1 species dominated our study sites, although other species were also common in some cassava fields. Factors associated with the surrounding landscape were unimportant for explaining variability in adult density, but the in-field variables of cassava age and cultivar were very important. The density of nymphs and the parasitism of nymphs was heavily influenced by a diversity of landscape factors surrounding the field, including the size of focal cassava field, and area of cassava in the landscape. However, unlike the trend from many other studies on drivers of natural enemy populations, this pattern was not solely related to the amount of non-crop vegetation, or the diversity of crops grown in the landscape.

Conclusions

Our findings provide management options to reduce whitefly abundance, including describing the characteristics of landscapes with high parasitism. The choice of cassava cultivar by the farmer is critical to reduce whitefly outbreak risk at the landscape-scale.

  相似文献   
4.
A cassava mosaic disease (CMD) pandemic currently affects much of East and Central Africa. To understand the factors driving the pandemic's continued spread, complementary data sets were collected from cassava plots, planted with healthy cuttings, at eight sites along a north–south transect in southern Uganda, through the pandemic's leading edge. Data were collected on virus incidence, symptom severity, populations of the whitefly vector, Bemisia tabaci , their infectivity and ability to transmit different viruses. In 1996, 6 months after planting, CMD incidences were highest at sites 1 and 2, then decreased progressively until site 6, and remained low at sites 7 and 8. The largest B. tabaci populations also occurred at northernmost sites, 1–3. In 1997, CMD incidence increased significantly at sites 5–8 and this was associated with significant increases in the B. tabaci populations. The pandemic's spread was also associated with significant increases in the percentage of dual infections of East African cassava mosaic virus -Uganda and African cassava mosaic virus , which caused the severest symptoms and the greatest reduction in leaf area. Whitefly adults collected from within the pandemic area were infective, whereas those collected ahead of the pandemic were not. The transmission rate of African cassava mosaic virus from plants with dual infections was significantly less than that of East African cassava mosaic virus -Uganda, which may explain the latter's predominance within the pandemic. These results show that the arrival of East African cassava mosaic virus -Uganda into areas affected previously only by African cassava mosaic virus , has resulted in novel virus/vector/host–plant interactions that drive the pandemic's continued spread.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号