首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147264篇
  免费   8455篇
  国内免费   85篇
林业   6219篇
农学   5049篇
基础科学   960篇
  19318篇
综合类   20883篇
农作物   5679篇
水产渔业   7784篇
畜牧兽医   78306篇
园艺   1951篇
植物保护   9655篇
  2020年   1311篇
  2019年   1558篇
  2018年   2423篇
  2017年   2718篇
  2016年   2473篇
  2015年   2145篇
  2014年   2667篇
  2013年   6235篇
  2012年   4679篇
  2011年   5606篇
  2010年   3770篇
  2009年   3797篇
  2008年   5525篇
  2007年   5334篇
  2006年   4967篇
  2005年   4535篇
  2004年   4384篇
  2003年   4453篇
  2002年   4061篇
  2001年   5044篇
  2000年   4917篇
  1999年   3965篇
  1998年   1577篇
  1997年   1591篇
  1996年   1457篇
  1995年   1721篇
  1994年   1429篇
  1993年   1469篇
  1992年   2945篇
  1991年   3129篇
  1990年   3075篇
  1989年   3113篇
  1988年   2804篇
  1987年   2771篇
  1986年   2749篇
  1985年   2572篇
  1984年   2104篇
  1983年   1870篇
  1982年   1248篇
  1979年   1823篇
  1978年   1400篇
  1977年   1254篇
  1976年   1204篇
  1975年   1293篇
  1974年   1538篇
  1973年   1619篇
  1972年   1574篇
  1971年   1387篇
  1970年   1417篇
  1969年   1302篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Soil carbon (C) saturation implies an upper limit to a soil's capacity to store C depending on the contents of silt + clay and poorly crystalline Fe and Al oxides. We hypothesized that the poorly crystalline Fe and Al oxides in silt + clay fraction increased the C saturation and thus reduced the capacity of the soil to sorb additional C input. To test the hypothesis, we studied the sorption of dissolved organic carbon (DOC) on silt + clay fractions (<53 µm) of highly weathered oxic soils, collected from three different land uses (i.e., improved pasture, cropping and forest). Soils with high carbon saturation desorbed 38% more C than soils with low C saturation upon addition of DOC, whereas adsorption of DOC was only observed at higher concentration (>15 g kg?1). While high Al oxide concentration significantly increased both the saturation and desorption of DOC, the high Fe oxide concentration significantly increased the desorption of DOC, supporting the proposition that both oxides have influence on the DOC sorption in soil. Our findings provide a new insight into the chemical control of stabilization and destabilization of DOC in soil.  相似文献   
2.
The allelopathic water extracts (AWEs) may help improve the tolerance of crop plants against abiotic stresses owing to the presence of the secondary metabolites (i.e., allelochemicals). We conducted four independent experiments to evaluate the influence of exogenous application of AWEs (applied through seed priming or foliage spray) in improving the terminal heat and drought tolerance in bread wheat. In all the experiments, two wheat cultivars, viz. Mairaj‐2008 (drought and heat tolerant) and Faisalabad‐2008 (drought and heat sensitive), were raised in pots. Both wheat cultivars were raised under ambient conditions in the wire house till leaf boot stage (booting) by maintaining the pots at 75% water‐holding capacity (WHC). Then, managed drought and heat stresses were imposed by maintaining the pots at 35% WHC, or shifting the pots inside the glass canopies (at 75% WHC), at booting, anthesis and the grain filling stages. Drought stress reduced the grain yield of wheat by 39%–49%. Foliar application of AWEs improved the grain yield of wheat by 26%–31%, while seed priming with AWEs improved the grain yield by 18%–26%, respectively, than drought stress. Terminal heat stress reduced the grain yield of wheat by 38%. Seed priming with AWEs improved the grain yield by 21%–27%; while foliar application of AWEs improved the grain yield by 25%–29% than the heat stress treatment. In conclusion, the exogenous application of AWEs improved the stay green, accumulation of proline, soluble phenolics and glycine betaine, which helped to stabilize the biological membranes and improved the tolerance against terminal drought and heat stresses.  相似文献   
3.
The objective of this experiment was to evaluate the Fieldscout CM 1000 NDVI and Yara N‐Tester as easy‐to‐use and cost‐effective tools for predicting foliar chlorophylls (a, b and total) and crude protein (CP) concentrations in herbage from three tropical grass species. Optical chlorophyll measurements were taken at three stages (4, 8 and 12 weeks) of regrowth maturity in Guinea grass (Panicum maximum) and Mulato II (Brachiaria hybrid) and at 6 and 12 weeks maturity in Paspalum spp (Paspalum atratum). Grass samples were harvested subsequent to optical measurements for laboratory analysis to determine CP and solvent‐extractable chlorophylls (a, b and total) concentrations. Optical chlorophyll measurements and CP concentrations were highly correlated (Yara N‐Tester: r2 = 0·77–0·89; Fieldscout CM 1000 NDVI: r2 = 0·52–0·84). Crude protein prediction models from the Yara N‐Tester and Fieldscout CM 1000 NDVI accounted for 70–89% and 44–73% CP variability, respectively, in Mulato II and Guinea grass. The Yara N‐tester produced more accurate and reliable CP estimates based on very high concordance correlation coefficient [CCC (0·73–0·91)] and low rMSPE, mean and regression bias. It is concluded that the Yara N‐Tester produces more accurate and reliable CP estimates of tropical pastures.  相似文献   
4.
Carbon storage in the soils on the Qinghai–Tibetan Plateau plays a very important role in the global carbon budget. In the 1990s, a policy of contracting collective grasslands to smaller units was implemented, resulting in a change from the traditional collective grassland management to two new management patterns: a multi‐household management pattern (MMP: grassland shared by several households without enclosures) and a single‐household management pattern (SMP: grassland enclosed and used by only one household). In 2016, 50 MMP and 54 SMP winter pastures on the Qinghai–Tibetan Plateau were sampled to assess the differences in soil organic carbon (SOC) between the two management patterns. Results showed that average SOC was significantly greater under MMP than under SMP, with an estimated 0.41 Mg C/ha/yr lost due to SMP following the new grassland contract. Based on the government's grassland policy, four grassland utilization scenarios were developed for both summer and winter pastures. We found that if the grassland were managed under SMP, likely C losses ranged between 0.31 × 107 and 6.15 × 107 Mg C/yr across the Qinghai–Tibetan Plateau relative to MMP, which more closely resembles pre‐1990s grassland management. Previous estimates of C losses have only considered land use change (with cover change) and ignored the impacts driven by land management pattern changes (without cover change). The new data suggest that C losses from the Qinghai–Tibetan Plateau are greater than previously estimated, and therefore that the grassland contract policy should be reviewed and SMP households should be encouraged to reunite into the MMP. These findings have potential implications for land management strategies not only on the Qinghai–Tibetan Plateau but also other grazing regions globally where such practices may exist.  相似文献   
5.
The objective of this study was to evaluate the effects of defoliation frequency (either at two‐ or three‐leaf stage) and nitrogen (N) application rate (0, 75, 150, 300, 450 kg N ha?1 year?1) on herbage carbohydrate and crude protein (CP) fractions, and the water‐soluble carbohydrate‐to‐protein ratio (WSC:CP) in perennial ryegrass swards. Crude protein fractions were analysed according to the Cornell carbohydrate and protein system. Carbohydrate fractions were analysed by ultra‐high‐performance liquid chromatography. Sward defoliation at two‐leaf stage increased the total CP, reduced the buffer‐soluble CP fractions and decreased carbohydrate fractions of herbage (P < 0·001). The effect of defoliation frequency was less marked during early spring and autumn (P < 0·001) than for the rest of the seasons. An increase in N application rate was negatively associated with WSC, fructans and neutral detergent fibre (P < 0·001), and positively associated with CP and nitrate (N‐NO3) contents of herbage. Nitrogen application rate did not affect CP fractions of herbage (P > 0·05). The fluctuations in CP and WSC contents of herbage resulted in lower WSC:CP ratios during early spring and autumn (0·45:1 and 0·75:1 respectively) than in late spring (1·11:1). The herbage WSC:CP ratio was greater (P < 0·001) at the three‐leaf than the two‐leaf defoliation stage and declined as the N application increased in all seasons (P < 0·001). The results of this study indicate that CP and carbohydrate fractions of herbage can be manipulated by sward defoliation frequency and N application rate. The magnitude of these effects, however, may vary with the season.  相似文献   
6.
Lupinus albus seeds contain conglutin gamma (Cγ) protein, which exerts a hypoglycemic effect and positively modifies proteins involved in glucose homeostasis. Cγ could potentially be used to manage patients with impaired glucose metabolism, but there remains a need to evaluate its effects on hepatic glucose production. The present study aimed to analyze G6pc, Fbp1, and Pck1 gene expressions in two experimental animal models of impaired glucose metabolism. We also evaluated hepatic and renal tissue integrity following Cγ treatment. To generate an insulin resistance model, male Wistar rats were provided 30% sucrose solution ad libitum for 20 weeks. To generate a type 2 diabetes model (STZ), five-day-old rats were intraperitoneally injected with streptozotocin (150 mg/kg). Each animal model was randomized into three subgroups that received the following oral treatments daily for one week: 0.9% w/v NaCl (vehicle; IR-Ctrl and STZ-Ctrl); metformin 300 mg/kg (IR-Met and STZ-Met); and Cγ 150 mg/kg (IR-Cγ and STZ-Cγ). Biochemical parameters were assessed pre- and post-treatment using colorimetric or enzymatic methods. We also performed histological analysis of hepatic and renal tissue. G6pc, Fbp1, and Pck1 gene expressions were quantified using real-time PCR. No histological changes were observed in any group. Post-treatment G6pc gene expression was decreased in the IR-Cγ and STZ-Cγ groups. Post-treatment Fbp1 and Pck1 gene expressions were reduced in the IR-Cγ group but increased in STZ-Cγ animals. Overall, these findings suggest that Cγ is involved in reducing hepatic glucose production, mainly through G6pc inhibition in impaired glucose metabolism disorders.  相似文献   
7.
The present study investigated the replacement of soybean meal with combinations of two or three alternative protein sources in diets for pond‐raised hybrid catfish, ♀ Ictalurus punctatus × ♂ Ictalurus furcatus. Alternative protein sources evaluated included cottonseed meal, distillers dried grains with solubles (DDGS), peanut meal, and porcine meat and bone meal (PMBM). Hybrid catfish fingerlings with a mean initial weight of 35 g/fish were stocked into 25 earthen ponds (0.04 ha) at a density of 14,826 fish/ha. Fish were fed once daily to apparent satiation for 166 d. No significant differences were observed for total diet fed, net yield, weight gain, survival, carcass yield, fillet yield, or fillet proximate composition among dietary treatments. Results show soybean meal may be completely replaced by combinations of cottonseed meal and one or two other alternative protein sources including DDGS, peanut meal, and PMBM in the diet without markedly affecting production and processing characteristics and fillet proximate composition of pond‐raised hybrid catfish. These alternative diets may be used during foodfish production when prices are favorable.  相似文献   
8.
The important root characteristics of root length density (RLD) and root mass density (RMD) generally differ among irrigation managements and potato cultivars. The objective of this study was to investigate the RLD and RMD variations and their functional relationships with gross potato tuber yield for two commercial potato cultivars, Agria and Sante, under different irrigation strategies. Full irrigation and water‐saving irrigation strategies, deficit and partial root drying irrigations, were applied statically (S) and dynamically (D) based on daily crop evapotranspiration. Results showed that SPRD had significantly greater RLD (3.64 cm/cm3) and RMD (132.7 μg/cm3) than other irrigation treatments. Between the potato cultivars, Agria had significantly larger values of RLD (3.50 cm/cm3) and RMD (138.7 μg/cm3) than Sante. The functional relationship between the root growth characteristics and tuber yield showed that under water‐saving irrigations, Agria increased root mass at the expense of gross tuber yield but Sante increased root mass to maintain larger gross tuber yields. However, Agria produced more roots and gross tuber yield than Sante, and it is concluded that Agria is a more drought‐tolerant potato cultivar, which is recommended for tuber production in regions where water might be scarce. It was shown that larger root production in potatoes was associated with improved tolerance to water stress.  相似文献   
9.

Background

Salinity is one of the most severe and widespread abiotic stresses that affect rice production. The identification of major-effect quantitative trait loci (QTLs) for traits related to salinity tolerance and understanding of QTL × environment interactions (QEIs) can help in more precise and faster development of salinity-tolerant rice varieties through marker-assisted breeding. Recombinant inbred lines (RILs) derived from IR29/Hasawi (a novel source of salinity) were screened for salinity tolerance in the IRRI phytotron in the Philippines (E1) and in two other diverse environments in Senegal (E2) and Tanzania (E3). QTLs were mapped for traits related to salinity tolerance at the seedling stage.

Results

The RILs were genotyped using 194 polymorphic SNPs (single nucleotide polymorphisms). After removing segregation distortion markers (SDM), a total of 145 and 135 SNPs were used to construct a genetic linkage map with a length of 1655 and 1662 cM, with an average marker density of 11.4 cM in E1 and 12.3 cM in E2 and E3, respectively. A total of 34 QTLs were identified on 10 chromosomes for five traits using ICIM-ADD and segregation distortion locus (SDL) mapping (IM-ADD) under salinity stress across environments. Eight major genomic regions on chromosome 1 between 170 and 175 cM (qSES1.3, qSES1.4, qSL1.2, qSL1.3, qRL1.1, qRL1.2, qFWsht1.2, qDWsht1.2), chromosome 4 at 32 cM (qSES4.1, qFWsht4.2, qDWsht4.2), chromosome 6 at 115 cM (qFWsht6.1, qDWsht6.1), chromosome 8 at 105 cM (qFWsht8.1, qDWsht8.1), and chromosome 12 at 78 cM (qFWsht12.1, qDWsht12.1) have co-localized QTLs for the multiple traits that might be governing seedling stage salinity tolerance through multiple traits in different phenotyping environments, thus suggesting these as hot spots for tolerance of salinity. Forty-nine and 30 significant pair-wise epistatic interactions were detected between QTL-linked and QTL-unlinked regions using single-environment and multi-environment analyses.

Conclusions

The identification of genomic regions for salinity tolerance in the RILs showed that Hasawi possesses alleles that are novel for salinity tolerance. The common regions for the multiple QTLs across environments as co-localized regions on chromosomes 1, 4, 6, 8, and 12 could be due to linkage or pleiotropic effect, which might be helpful for multiple QTL introgression for marker-assisted breeding programs to improve the salinity tolerance of adaptive and popular but otherwise salinity-sensitive rice varieties.
  相似文献   
10.
Lampreys have a complex life cycle which includes a multi‐year infaunal larval stage (ammocoete). Gut content analysis has generally identified detritus (i.e., unidentifiable organic matter) as the major dietary component to ammocoetes, though algae can also be important. However, gut content preserves only a snapshot of the animal's diet and does not reflect assimilated material. In order to better characterise the nutritional sources supporting ammocoete growth, we analysed ammocoete body tissue and potential dietary sources at two streams using natural Δ14C and δ15N to estimate time‐integrated nutritional support. Bayesian isotope mixing models revealed differences in the importance of sources supporting ammocoetes between sites. Ammocoetes from a stream in a mixed land usage area (~50% agriculture, ~40% forest and ~10% developed) were primarily supported (mean: ~50%) by fresh terrestrial organic matter but were also supported by substantial contributions (mean: ~30%) by aged organic matter (AOM) and autochthonous material (algae; mean ~20%). In a predominantly forested (~90%) headwater stream, different modelling scenarios (uninformed or informed priors) suggested that algal support of ammocoete nutrition ranged from 7% to 45%. However, the model relying on informed priors developed from gut content analysis produced the low estimates, suggesting these were more reliable. When algae were a minor component of the nutrition at the forested site, ammocoetes were highly dependent on AOM (83 ± 26%; mean ± SD). Based on these findings, ammocoete growth and development are predicted to be strongly influenced by both land use and the availability of allochthonous and autochthonous materials of varying ages within streams.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号