首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Drought and heat are among the main abiotic stresses causing severe damage to the cereal productivity when occur at reproductive stages. In this study, ten wheat cultivars were screened for combined heat and drought tolerance imposed at booting, heading, anthesis and post‐anthesis stages, and role of the foliage applied plant extracts was evaluated in improving the performance of differentially responding wheat cultivars under terminal heat and drought stresses. During both years, wheat crop was raised under ambient temperature and 70% water holding capacity (WHC) till leaf boot stage. The plant extracts (3% each) of sorghum, brassica, sunflower and moringa were foliage applied at booting, anthesis and post‐anthesis stage; and after one week of application of these plant extracts, combined heat and drought was imposed at each respective stage. Heat and drought stresses were imposed at each respective stage by placing pots in glass canopies with temperature of 4 ± 2°C above than the ambient temperature in combination with drought stress (35% WHC) until maturity. Combination of drought and heat stresses significantly reduced the performance of tested wheat cultivars; however, stress at the booting and heading stages was more damaging than the anthesis and post‐anthesis stages. Cultivars Mairaj‐2008 and Chakwal‐50 remained green with extended duration for grain filling, resulting in the maintenance of number of grains per spike and 100‐grain weight under stress conditions and thus had better grain yield and water‐use efficiency. However, in cultivars Fsd‐2008, and Shafaq‐2006, the combined imposition of drought and heat accelerated the grain filling rate with decrease in grain filling duration, grain weight and grain yield. Foliar application of all the plant extracts improved the wheat performance under terminal heat and drought stress; however, brassica extract was the most effective. This improvement in grain yield, water‐use efficiency and transpiration efficiency due to foliage applied plant extracts, under terminal heat and drought stress, was owing to better stay‐green character and accumulation of more soluble phenolics, which imparted stress tolerance as indicated by relatively stable grain weight and grain number. In crux, growing of stay‐green wheat cultivars with better grain filling and foliage application of plant extracts may help improving the performance of bread wheat under combined heat and drought stresses.  相似文献   

2.
To study the effects of early drought priming at 5th‐leaf stage on grain yield and nitrogen‐use efficiency in wheat (Triticum aestivum L.) under post‐anthesis drought and heat stress, wheat plants were first exposed to moderate drought stress (drought priming; that is, the leaf water potential reached ca. ?0.9 MP a) at the 5th‐leaf stage for 11 days, and leaf water relations and gas exchange rates, grain yield and yield components, and agronomic nitrogen‐use efficiency (ANUE ) of the primed and non‐primed plants under post‐anthesis drought and heat stress were investigated. Compared with the non‐primed plants, the drought‐primed plants possessed higher leaf water potential and chlorophyll content, and consequently a higher photosynthetic rate during post‐anthesis drought and heat stress. Drought priming also resulted in higher grain yield and ANUE in wheat under post‐anthesis drought and heat stress. Drought priming at vegetative stage improves carbon assimilation and ANUE under post‐anthesis drought and heat stress and their combination in wheat, which might be used as a field management tool to enhance stress tolerance of wheat crops to multiple abiotic stresses in a future drier and warmer climate.  相似文献   

3.
Heat stress resulting from climate change and more frequent weather extremes is expected to negatively affect wheat yield. We evaluated the response of different spring wheat cultivars to a post‐anthesis high temperature episode and studied the relationship between different traits associated with heat tolerance. Fifteen spring wheat (Triticum aestivum L.) cultivars were grown in pots under semifield conditions, and heat stress (35/26 °C) and control treatments (20/12 °C) were applied in growth chambers for 5 days starting 14 days after flowering. The heat stress treatment reduced final yield in all cultivars. Significant variation was observed among cultivars in the reduction in average grain weight and grain dry matter yield under heat stress (up to 36 % and 45 %, respectively). The duration of the grain‐filling period was reduced by 3–12 days by the heat treatment. The reduction in the grain‐filling period was negatively correlated with grain nitrogen yield (r = ?0.60). A positive correlation (r = 0.73) was found between the treatment effect on green leaf area (GLA) and the reduction in yield resulting from heat stress. The amount of stem water‐soluble carbohydrates (WSC) was not related to treatment effects on grain yield or grain weight. However, the treatment effect on stem WSC remobilization was negatively correlated with reduction in grain‐filling duration due to heat stress (r = ?0.74) and positively with treatment effect on grain N yield (r = 0.52). The results suggest that the effect of the heat treatment on GLA was the trait most associated with yield reduction in all cultivars. These findings suggest the importance of ‘stay green’‐associated traits in plant breeding as well as the need for better modelling of GLA in crop models, especially with respect to brief heat episodes during grain filling. There is in particular a need to model how heat and other stresses, including interacting effects of heat and drought, affect duration of GLA after flowering and how this affects source–sink relations during grain filling.  相似文献   

4.
Abiotic stress tolerance in plants is said to be induced by pre-stress events (priming) during the vegetative phase. We aimed to test whether drought priming could improve the heat and drought tolerance in wheat cultivars. Two wheat cultivars “Gladius” and “Paragon” were grown in a fully controlled gravimetric platform and subjected to either no stress or two drought cycles during the tillering stage. At anthesis, both batches were either subjected to high temperature stress, drought stress or kept as control. No alleviation of grain yield reduction due to priming was observed. Higher CO2 assimilation rates were achieved due to priming under drought stress. Yield results showed that priming was not damage cumulative to wheat. Priming was responsible to alleviated biochemical photosynthetic limitations under drought stress and sustained photochemical utilization under heat stress in “Paragon.” Priming as a strategy in abiotic stress alleviation was better evidenced in the stress susceptible cultivar “Paragon” than tolerant cultivar “Gladius”; therefore, the type of response to priming appears to be cultivar dependable, and thus phenotypical variation should be expected when studying the effects of abiotic priming.  相似文献   

5.
High temperature and drought stress are projected to reduce crop yields and threaten food security. While effects of heat and drought on crop growth and yield have been studied separately, little is known about the combined effect of these stressors. We studied detrimental effects of high temperature, drought stress and combined heat and drought stress around anthesis on yield and its components for three wheat cultivars originating from Germany and Iran. We found that effects of combined heat and drought on the studied physiological and yield traits were considerably stronger than those of the individual stress factors alone, but the magnitude of the effects varied for specific growth‐ and yield‐related traits. Single grain weight was reduced under drought stress by 13%–27% and under combined heat and drought stress by 43%–83% but not by heat stress alone. Heat stress significantly decreased grain number by 14%–28%, grain yield by 16%–25% and straw yield by 15%–25%. Cultivar responses were similar for heat but different for drought and combined heat and drought treatments. We conclude that heat stress as imposed in this study is less detrimental than the effects of those other studied stresses on growth and yield traits.  相似文献   

6.
Chickpea (Cicer arietinum L.) is a dry season food legume largely grown on residual soil moisture after the rainy season. The crop often experiences moisture stress towards end of the crop season (terminal drought). The crop may also face heat stress at the reproductive stage if sowing is delayed. The breeding approaches for improving adaptation to these stresses include the development of varieties with early maturity and enhanced abiotic stress tolerance. Several varieties with improved drought tolerance have been developed by selecting for grain yield under moisture stress conditions. Similarly, selection for pod set in the crop subjected to heat stress during reproductive stage has helped in the development of heat‐tolerant varieties. A genomic region, called QTL‐hotspot, controlling several drought tolerance‐related traits has been introgressed into several popular cultivars using marker‐assisted backcrossing (MABC), and introgression lines giving significantly higher yield than the popular cultivars have been identified. Multiparent advanced generation intercross (MAGIC) approach has been found promising in enhancing genetic recombination and developing lines with enhanced tolerance to terminal drought and heat stresses.  相似文献   

7.
To investigate the interactive effects of drought, heat and elevated atmospheric CO2 concentration ([CO2]) on plant water relations and grain yield in wheat, two wheat cultivars with different drought tolerance (Gladius and Paragon) were grown under ambient and elevated [CO2], and were exposed to post‐anthesis drought and heat stress. The stomatal conductance, plant water relation parameters, abscisic acid concentration in leaf and spike, and grain yield components were examined. Both stress treatments and elevated [CO2] reduced the stomatal conductance, which resulted in lower leaf relative water content and leaf water potential. Drought induced a significant increase in leaf and spike abscisic acid concentrations, while elevated [CO2] showed no effect. At maturity, post‐anthesis drought and heat stress significantly decreased the grain yield by 21.3%–65.2%, while elevated [CO2] increased the grain yield by 20.8% in wheat, which was due to the changes of grain number per spike and thousand grain weight. This study suggested that the responses of plant water status and grain yield to extreme climatic events (heat and drought) can be influenced by the atmospheric CO2 concentration.  相似文献   

8.
Scarcity of water is a severe constraint, which hinders the wheat productivity worldwide. However, foliage application of osmoprotectants may be useful in reducing the drought‐induced yield losses in wheat (Triticum aestivum L.). In this study, potential of foliage applied osmoprotectants (proline, gamma‐aminobutyric acid) in improving the performance of bread wheat against terminal drought was evaluated. Both proline and gamma‐aminobutyric acid (GABA) were foliage applied at 50, 100 and 150 mg/L at anthesis stage (BBCH‐identification code‐ 61), in two bread wheat cultivars viz. Mairaj‐2008 and BARS‐2009. After 1 week of foliage application of these osmoprotectants, drought was imposed by maintaining the pots at 35% water holding capacity. Imposition of drought caused significant reduction in the grain yield of both tested bread wheat cultivars; nonetheless, foliage applied osmoprotectants at either concentration improved the chlorophyll contents, accumulation of proline, glycinebetaine and total soluble phenolics and reduced the malondialdehyde contents, which resulted in better stay green, maintenance of grain weight and grain number under drought stress, thus resulting in better grain yield, water‐use efficiency and transpiration efficiency in both wheat cultivars. However, foliage applied proline at 150 mg/L, and GABA at 100 mg/L was most effective than other concentrations of these osmoprotectants. Performance of cultivar Mairaj‐2008 was quite better than cultivar BARS‐2009. In crux, foliar application of proline and GABA at pre‐optimized rate can be opted as a shotgun approach to improve the performance of wheat under terminal drought.  相似文献   

9.
Drought stress and zinc (Zn) deficiency are serious abiotic stress factors limiting crop production in Turkey, especially in Central Anatolia. In this study, the effects of Zn deficiency and drought stress on grain yield of 20 wheat cultivars (16 bread wheat, Triticum aestivum; four durum wheat, Triticum durum cultivars) were investigated over 2 years under rainfed and irrigated conditions in Central Anatolia where drought and Zn deficiency cause substantial yield reductions. Plants were treated with (+Zn: 23 kg Zn ha−1, as ZnSO4·7H2O) and without (−Zn) Zn under rainfed and irrigated conditions. Both Zn deficiency and rainfed treatments resulted in substantial decreases in grain yield. Significant differences were determined between both bread wheat and durum wheat cultivars in terms of drought stress tolerance. Considering drought sensitivity indices over 2 years, the bread wheat cultivars Yayla‐305, Gerek‐79, Dagdas‐94 and Bolal‐2973 were found to be more drought‐tolerant than the other cultivars under both −Zn and +Zn treatments. Especially the durum wheat cultivars Cakmak 79 and Selcuklu 97 showed much greater drought susceptibility under Zn deficiency, and irrigation alone was not sufficient to obtain satisfying grain yield without Zn application. The results indicate that sensitivity to Zn deficiency stress became more pronounced when plants were drought‐stressed. The effect of irrigation on grain yield was maximized when Zn was adequately supplied, leading to the suggestion that efficient water use in Central Anatolia seems to be highly dependent on the Zn nutritional status of plants.  相似文献   

10.
Agroforestry systems are reported as climate‐resilient productive systems, but it is yet unclear how tree shade affects crops performance. The aim of this work was to assess how the phenology, plant traits and grain yield of wheat and barley were affected by shade. In an open greenhouse experiment, we cultivated in pots nine cultivars differing in precocity for each species and imposed three artificial shading levels (S0 ~ 0%, S1 ~ 25%, S2 ~ 50%) at the start of cereal booting. Our results showed that shade speeded up first growth stages in both species, until the starting of milk development. Barley showed consistent phenological responses to the three irradiance levels among cultivars, but not wheat that showed larger phenological differences among cultivars at moderate shade. Deep shade prolonged the time needed for wheat grain ripening. Both species increased grain yield by 15%–20% with shade, driven by shade‐acclimations of plant traits that differed among species. For wheat, grain yield was determined by the assemblage of traits that contribute to yield, such as grain weight, precocity and non‐photochemical quenching, while, for barley, SPAD value, precocity to reach phenological stages, grains per spike and plant height had the strongest influence. These traits varied widely among cultivars and seem of interest to identify best suited cultivars for shading conditions of Mediterranean agroforestry systems.  相似文献   

11.
High temperature and drought stress are among the two most important environmental factors influencing crop growth, development and yield processes. These two stresses commonly occur in combination. Objectives of this research were to investigate the independent and combined effects of high temperature and drought stress during grain filling on physiological, vegetative and yield traits and expression of a chloroplast protein synthesis elongation factor (EF‐Tu) of wheat (Triticum aestivum L.). Two spring wheat cultivars (Pavon‐76 and Seri‐82) were grown at control temperatures (CT; day/night, 24/14 °C; 16/8 h photo/dark period) from sowing to heading. Thereafter, one half of the plants were exposed to high temperature stress (HT; 31/18 °C in Exp. 1 and 34/22 °C in Exp. 2), drought stress (withholding water), or a combination of both HT and drought stress. There were significant influences of HT and/or drought stress on physiological, growth and yield traits. There was no cultivar or cultivar by temperature or cultivar by drought interaction effects on most traits. The decreases in leaf photosynthesis were greater at HT compared with drought alone throughout the stress period, and the combination of HT and drought had the lowest leaf photosynthetic rates. Overall, HT or drought had similar effects (about 48–56 % decrease) on spikelet fertility, grain numbers and grain yield. High temperature decreased grain numbers (by 56 % averaged across both experiments) and individual grain weight (by 25 %), while, respective decreases due to drought were 48 % and 35 %. This suggests that the grain numbers were more sensitive to HT and grain weights to drought for the range of temperatures tested in this research. The interaction between HT and drought stress was significant for total dry weights, harvest index and spikelet fertility, particularly when HT stress was severe (34/22 °C). The combined effects of HT and drought were greater than additive effects of HT or drought alone for leaf chlorophyll content, grain numbers and harvest index. High temperature stress and the combination of HT and drought stress but not drought stress alone resulted in the overexpression of EF‐Tu in both spring wheat cultivars.  相似文献   

12.
Terminal drought is threatening the wheat productivity worldwide, which is consumed as a staple food by millions across the globe. This study was conducted to examine the influence of foliage‐applied stress signalling molecules hydrogen peroxide (H2O2; 50, 100, 150 μm ) and nitric oxide donor sodium nitroprusside (SNP; 50, 100, 150 μm ) on resistance against terminal drought in two bread wheat cultivars Mairaj‐2008 and BARS‐2009. These stress signalling molecules were applied at anthesis stage (BBCH 61); drought was then imposed by maintaining pots at 35% water holding capacity. Terminal drought caused significant reduction in grain yield of both tested bread wheat cultivars; however, foliage application of both stress signalling molecules at either concentration improved the performance of both bread wheat cultivars. Maximum improvement in 100‐grain weight (12.2%), grains per spike (19.7%), water‐use efficiency (WUE; 19.8%), chlorophyll content index (10.7%), total soluble phenolics (21.6%) and free leaf proline (34.3%), and highest reduction in leaf malondialdehyde contents (20.4%) was recorded when H2O2 was foliage‐applied at 100 μm . Foliage application of SNP enhanced the grains per spike, 100‐grain weight and grain yield by 14.9%, 11.3% and 20.1%, respectively, than control. The foliage‐applied stress signalling molecules improved the accumulation of soluble phenolics, proline and glycine betaine with simultaneous reduction in malondialdehyde contents, which enabled wheat plants to sustain the biological membranes under stress resulting in better stay green (high chlorophyll contents) under drought. This helped improving the grain number, grain weight, grain yield, WUE and transpiration efficiency. In crux, foliage‐applied H2O2 and SNP, at pre‐optimized rate, may be opted to lessen the drought‐induced yield losses in bread wheat in climate change conditions.  相似文献   

13.
Heat and drought are the most important wheat production constraints worldwide. The objectives of this research were to evaluate the independent and combined effects of drought and heat in SeriM82/Babax population. Genotypes showed 11, 38 and 52% losses in grain yield (YLD) in 2010–11 and 18, 25 and 48% in 2011–12 under heat, drought and combined stress, respectively. Seri M82 had higher YLD than Babax under heat and combined stress. Grain per spike and canopy temperature at vegetative stage (CTv) in irrigated, day to heading and CT at grain‐filling stage (CTg) in drought, CTg and thousand‐grain weight (TGW) in heat and in combined trials were the best predictors of YLD. Results indicated that due to genotype by environment interactions not all stress‐adaptive traits could be accumulated in a single genotype. In general, day to heading, CTg and grain weight are suggested as indirect selection criteria for increasing YLD under heat and drought stresses. In particular, CTg could be used as a rapid and effective criterion for screening a high number of genotypes.  相似文献   

14.
Heat stress during grain development adversely affects the starch content of grain in wheat, which results in poor grain quality and yield. Identification of the sources of heat tolerance for grain starch content in wheat species is an important step towards breeding for heat‐tolerant wheat. In this study, 32 wild and cultivated genotypes belonging to diploid (probable donors of B, A and D genomes), tetraploid (BBAA and AAGG genomes) and hexaploid (BBAADD genome) wheat species were evaluated for heat stress tolerance in the field at the Indian Agricultural Research Institute (IARI), New Delhi, India (77°12′ E; 28°40′ N; 228.6 m m.s.l) on two dates, 18 November (normal sowing) and 15 January (heat stress), during 1995–96. The crop sown in January experienced mean maximum temperatures of 31.0–39.3 °C during grain development, which are considered to represent heat stress for wheat grain development. Hexaploids had the highest grain starch content and the lowest heat susceptibility index, followed by tetraploid and diploid species. The heat susceptibility index (S) for grain starch correlated significantly and positively with that of grain weight (Y = 1.259X ? 0.29, R2 = 0.8902, P < 0.001) across wheat species, while the actual grain growth duration or the ‘S’ of grain growth duration did not correlate significantly with that of grain weight. Hence, a high mean grain growth rate under heat stress is a better trait for heat tolerance than long grain growth duration. Wide genetic variability for heat tolerance in grain starch content was observed among the wheat species. Hence, the grain weight and quality under heat stress can be improved by using the variability available among wheat species.  相似文献   

15.
Drought‐induced damages in crop plants are ranked at top amid all losses instigated by diverse abiotic stresses. Terminal drought (drought at reproductive phase) has emerged as a severe threat to the productivity of wheat crop. Different seed enhancement techniques, genotypes and distribution of crop plants in different spacings have been explored individually to mitigate these losses; however, their interaction has rarely been tested in improving drought resistance in wheat. This study was conducted to evaluate the potential role of different seed enhancement techniques and row spacings in mitigating the adversities of terminal drought in two wheat cultivars during two consecutive growing seasons of 2010–2011 and 2011–2012. Seeds of wheat cultivars Lasani‐2008 (medium statured) and Triple Dwarf‐1 (dwarf height) soaked in water (hydropriming) or CaCl2 (osmopriming) were sown in 20‐, 25‐ and 30‐cm spaced rows; just before heading, the soil moisture was maintained at 100 % field capacity (well watered) or 50 % field capacity (terminal drought) till maturity. Terminal drought significantly reduced the yield and related traits compared with well‐watered crop; however, osmopriming improved the crop performance under terminal drought. Among different row spacings, wheat sown in 20‐cm spaced rows performed better during both years of study. Wheat cultivar Lasani‐2008 performed better than cultivar Triple Dwarf‐1 under both well‐watered and stress conditions. Maximum net returns and benefit–cost ratio were recorded from osmoprimed seeds of cultivar Lasani‐2008 sown in 20‐cm spaced rows under well‐watered condition. Nonetheless, osmoprimed seeds of cultivar Lasani‐2008 sown in 20‐cm spaced rows were better able to produce good yield under terminal drought.  相似文献   

16.
To elucidate genotypic differences expressed through the grain yield of drought-stressed wheat, 21 commercial varieties and advanced lines were evaluated in the field under a range of soil water levels to induce varying degrees of drought stress. This paper presents data on grain yield and yield-based indices to indicate drought tolerance and drought susceptibility. AZS-4 was identified as drought tolerant and AZS-17 and ‘Pavon’ as drought susceptible. High gram yield under stress can be explained in terms of high yield potential, thus grain yield proved to be the best indicator of drought tolerance.  相似文献   

17.
Normalized difference vegetation index (NDVI), which is a measure of leaf greenness (chlorophyll content), is considered to be correlated with crop productivity. This study was conducted to examine genotypic variations for NDVI at different growth stages and its relationship to yield in winter wheat under terminal heat stress. Thirty winter wheat genotypes were evaluated at two locations in 2009–2010 and 2010–2011 in Uzbekistan. The NDVI was recorded at booting, heading, milk and dough stages. The wheat genotypes differed significantly for NDVI at each stage. Grain yield ranged from 3.9 to 6.1 t/ha. Wheat genotypes differed in per cent decline in NDVI from booting to dough stage. However, several high‐yielding genotypes maintained higher NDVI than low‐yielding genotypes when heat stress was evident. The findings suggest change in NDVI during heat stress could be a measure of tolerance. The positive correlation of NDVI with grain yield suggests that it could be used as an indirect selection criterion for identifying physiologically superior, high‐yielding wheat lines under terminal heat stress.  相似文献   

18.
Heat stress during grain filling has been documented to decrease wheat grain yield and quality in arid regions worldwide. We studied the effect of heat stress on wheat flour quality in heat tolerant cultivars to define the effects of heat stress on flour quality and to identify germplasm combining traits for heat tolerance and good flour quality. We studied the kernel phenotypic traits, the expression of seed storage proteins (SSPs), and the resulting flour quality under heat and normal conditions. Under heat stress, all cultivars yielded narrow-shaped seeds, and increased protein contents as compared to the control plants grown under normal conditions. The specific sedimentation values used to estimate the gluten quality varied between cultivars. We identified cultivars that could maintain good flour quality under heat stress conditions: ‘Imam’, which possessed the Glu-D1d allele responsible for the suitable bread-making; ‘Bohaine’, which displayed high expression level of SSPs; and ‘Condor’, which possessed slight variations in the ratio of each SSP under heat stress conditions. Combining the desirable traits from these cultivars could yield a wheat cultivar with heat tolerance and good flour quality.  相似文献   

19.
Increased grain yield potential of newcultivars of wheat (Triticum aestivumL.) is attributed to morphological traits,but actual yield is determined mostly byenvironmental conditions. Our objectivewas to ascertain the contribution ofresistance to freezing, high temperature,drought, and defoliation to advances inyield of landmark cultivars of winter wheatin the U.S. Great Plains. Eight cultivarsthat represented significant improvementbetween 1874 and 1994 were compared bystandard electroconductivity measurementsof stability of seedling cell membranes tofreezing, high temperature, and desiccationand by grain yield and its components inplants subjected to freezing during theseedling stage and to high temperature,drought, and defoliation during maturation. Genetic changes relative to `Turkey'(introduced 1874) in stability of cellmembranes to freezing, high temperature,and desiccation were small andinconsistent. Advances in grain yieldunder control conditions were similar togains in field studies. Most cultivars hadlittle genetic change in yield afterfreezing, drought, or defoliation, probablybecause high levels of resistance areincompatible with high yield potential andthe stresses are episodic. Genetic advancein grain yield under high temperature wasphenotypically correlated with change inyield under control conditions, suggestingthat the trait is essential forproductivity because of the ubiquitousoccurrence of the stress in the region. Weconcluded that changes in resistances tofreezing, drought, and defoliationcontributed little to advances inproductivity of winter wheat in the GreatPlains, but that resistance to hightemperature was important for new cultivars.  相似文献   

20.
Increasing heat and water stress are important threats to wheat growth in rain-fed conditions. Using climate scenario-based projections from the Coupled Model Intercomparison Project phase 5 (CMIP5), we analysed changes in the probability of heat stress around wheat flowering and relative yield loss due to water stress at six locations in eastern Australia. As a consequence of warmer average temperatures, wheat flowering occurred earlier, but the probability of heat stress around flowering still increased by about 3.8%–6.2%. Simulated potential yield across six sites increased on average by about 2.5% regardless of the emission scenario. However, simulated water-limited yield tended to decline at wet and cool locations under future climate while increased at warm and dry locations. Soils with higher plant available water capacity (PAWC) showed a lower response of water-limited yield to rainfall changes except at very dry sites, which means soils with high PAWC were less affected by rainfall changes compared with soils with low PAWC. Our results also indicated that a drought stress index decreased with increasing PAWC and then stagnated at high PAWC. Under high emission scenario RCP8.5, drought stress was expected to decline or stay about the same due to elevated CO2 compensation effect. Therefore, to maintain or increase yield potential in response to the projected climate change, increasing cultivar tolerance to heat stress and improving crop management to reduce impacts of water stress on lower plant available water holding soils should be a priority for the genetic improvement of wheat in eastern Australia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号