首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15074篇
  免费   912篇
  国内免费   1114篇
林业   856篇
农学   1131篇
基础科学   514篇
  1845篇
综合类   5550篇
农作物   985篇
水产渔业   697篇
畜牧兽医   3517篇
园艺   1280篇
植物保护   725篇
  2024年   35篇
  2023年   203篇
  2022年   368篇
  2021年   513篇
  2020年   555篇
  2019年   669篇
  2018年   428篇
  2017年   637篇
  2016年   780篇
  2015年   695篇
  2014年   777篇
  2013年   873篇
  2012年   1242篇
  2011年   1294篇
  2010年   1058篇
  2009年   914篇
  2008年   891篇
  2007年   1007篇
  2006年   771篇
  2005年   549篇
  2004年   438篇
  2003年   377篇
  2002年   289篇
  2001年   244篇
  2000年   240篇
  1999年   187篇
  1998年   125篇
  1997年   126篇
  1996年   88篇
  1995年   97篇
  1994年   101篇
  1993年   78篇
  1992年   77篇
  1991年   52篇
  1990年   46篇
  1989年   39篇
  1988年   38篇
  1987年   26篇
  1986年   27篇
  1985年   24篇
  1984年   8篇
  1983年   14篇
  1982年   9篇
  1981年   14篇
  1980年   19篇
  1979年   25篇
  1978年   15篇
  1962年   3篇
  1956年   8篇
  1955年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
准确估算区域降水对水文过程评价和水资源管理意义重大。为评估TRMM 3B42V7降水产品在海河流域南系的估算精度及其在土壤和水评估模型(Soil and Water Assessment Tool,SWAT)中的适用性,利用28个气象站降水观测数据(2007-2016年)和101个雨量站观测数据(2010-2016年)开展研究。研究表明:站点尺度上,3B42V7降水产品对月降水估算的均方根误差小于15 mm,平均误差小于8.5 mm;在湿润季节的估算精度更好。流域尺度上,日降水估算精度较差,相关系数小于0.6。分区尺度上,3B42V7能够很好地捕捉到不同等级降水强度,但对微量降雨有所低估;山区和平原的年降水量均出现高估现象,平原区较为突出;此外,3B42V7能够较好地捕捉到研究区内极端降水的时间和空间分布。分2种情景进行水文模拟,利用月平均流量对模型进行校准和验证,在情景Ⅰ中,验证期模拟结果较好,决定系数在0.56~0.96之间,纳什效率系数在-11.09~0.94之间。TRMM 3B42V7可为海河流域及其类似区域的水资源管理提供参考。  相似文献   
72.
为研究CeO2添加对生物质催化气化制氢特性的影响,该研究采用分级气化系统分析了不同CeO2/Fe2O3比例(Ce∶Fe摩尔比为0∶1、3∶7、5∶5、7∶3、1∶0)双金属催化剂对纤维素水蒸气催化重整制氢气体产物产量、组成以及催化剂的结构演变特性的影响。结果表明,CeO2/Fe2O3催化剂在制氢反应中的催化性能明显优于纯CeO2或Fe2O3催化剂,当Ce∶Fe摩尔比为3∶7时,在800℃下氢气的最大产率为21.63 mmol/g(以纤维素计,下同);当温度大于等于800℃时,催化剂氧化还原反应后可生成CeFeO3,且CeFeO3的存在对纤维素水蒸气气化过程有促进作用。CeO2的引入提高了催化剂的氧化性能和稳定性,提高了使用寿命。该研究对生物质气化机制的深入理解具有一定的指导意义。  相似文献   
73.
Intensive vegetable production in greenhouses has rapidly expanded in China since the 1990s and increased to 1.3 million ha of farmland by 2016, which is the highest in the world. We conducted an 11‐year greenhouse vegetable production experiment from 2002 to 2013 to observe soil organic carbon (SOC) dynamics under three management systems, i.e., conventional (CON), integrated (ING), and intensive organic (ORG) farming. Soil samples (0–20 and 20–40 cm depth) were collected in 2002 and 2013 and separated into four particle‐size fractions, i.e., coarse sand (> 250 µm), fine sand (250–53 µm), silt (53–2 µm), and clay (< 2 µm). The SOC contents and δ13C values of the whole soil and the four particle‐size fractions were analyzed. After 11 years of vegetable farming, ORG and ING significantly increased SOC stocks (0–20 cm) by 4008 ± 36.6 and 2880 ± 365 kg C ha?1 y?1, respectively, 8.1‐ and 5.8‐times that of CON (494 ± 42.6 kg C ha?1 y?1). The SOC stock increase in ORG at 20–40 cm depth was 245 ± 66.4 kg C ha?1 y?1, significantly higher than in ING (66 ± 13.4 kg C ha?1 y?1) and CON (109 ± 44.8 kg C ha?1 y?1). Analyses of 13C revealed a significant increase in newly produced SOC in both soil layers in ORG. However, the carbon conversion efficiency (CE: increased organic carbon in soil divided by organic carbon input) was lower in ORG (14.4%–21.7%) than in ING (18.2%–27.4%). Among the four particle‐sizes in the 0–20 cm layer, the silt fraction exhibited the largest proportion of increase in SOC content (57.8% and 55.4% of the SOC increase in ORG and ING, respectively). A similar trend was detected in the 20–40 cm soil layer. Over all, intensive organic (ORG) vegetable production increases soil organic carbon but with a lower carbon conversion efficiency than integrated (ING) management.  相似文献   
74.
Biochar has been shown to be potentially beneficial for enhancing yields and soil properties, and diminishing nitrogen (N) losses. However, it remains unclear how biochar regulates soil carbon (C) and N to mitigate N losses induced by straw mixing with N fertilizer in dryland soils. Therefore, we investigated the effects of straw mixing (S1), S1 with biochar (SB) and no straw inputs (S0), and routine urea application rates (N1) and 70% of routine rates (N0.7) on yields and N losses, and identify the relationship between N losses and soil C and N compounds. Results showed that N0.7 and N1 were suitable for the maize and wheat seasons, respectively, contributing to mitigating N losses without reducing crop yields. Moreover, in the maize season, N0.7-SB significantly mitigated the straw-induced NH3-N and N2O-N emissions by 106% and 81%, respectively. In the wheat season, N1-SB reduced the straw-induced NH3-N and N2O-N emissions by 35% and 66%, respectively. In addition, N0.7-SB sharply reduced soil inorganic N (SIN) storage in the maize season. Furthermore, the NH3-N and N2O-N emission rates were negatively correlated with dissolved organic carbon/SIN content (0–20 cm) (DOC/SIN0-20). N losses (N2O-N and NH3-N emissions and SIN storage) were positively correlated with SIN0-20, but negatively correlated with soil organic carbon / SIN0-20 (SOC/ SIN0-20). This study provides further evidence that biochar with an appropriate N application rate decreased SIN0-20 and increased DOC/SIN0-20, thus reducing SIN storage and the straw-induced gaseous N emissions without decreasing crop yields.  相似文献   
75.
AIM:To investigate the effect of CUDC-907, a dual histone deacetylase (HDAC) and phosphatidylinositol 3-kinase (PI3K) inhibitor, on the DNA damage, cell cycle distribution and autophagy in human glioma U251 cells. METHODS:U251 cells were treated with CUDC-907 of different concentrations, and the cell viability was detected by MTT assay. The quantitative γ-H2AX foci were determined by laser scanning confocal microscopy. The cell cycle distribution of U251 cells was examined by flow cytometry. The protein expression was determined by Western blot analysis. RESULTS:CUDC-907 inhibited the cell viability and the phosphorylation of Akt and p70 ribosomal protein S6 kinase (p70s6K) in the U251 cells (P<0.05). In CUDC-907-treated cells, the number of γ-H2AX foci and protein expression of γ-H2AX were increased significantly (P<0.05). CUDC-907 also induced cell arrest in the G2/M phase by up-regulating the expression of p21, and inhibiting the protein level of cyclin B1 and the phosphorylation of cell division cycle protein 2 (Cdc2). In addition, CUDC-907 triggered cell autophagy, and inhibition of autophagy increased CUDC-907-induced DNA damage of U251 cells. CONCLUSION:CUDC-907 significantly inhibits PI3K/Akt signaling pathway, induces DNA damage and arrests cell cycle in G2/M phase. Blockage of autophagy promotes CUDC-907-induced DNA damage of U251 cells.  相似文献   
76.
AIM: To investigate the effect of all-trans retinoic acid (ATRA) on blood-brain barrier after cerebral ischemia-reperfusion (CIR) injury in rats and its possible role mechanism.METHODS: Male SD rats were randomly divided into sham group, model (CIR) group and CIR+ATRA (10, 30 and 90 mg/kg) groups. The rat model of CIR injury was established by MCAO thread occlusion method. After ischemia for 1.5 h and reperfusion for 24 h, the neurological functional behavioral score, cerebral infarction volume, brain water content and Evans blue content were determined. The activity of matrix metalloprotein-9 (MMP-9) was measured by gelatin zymography. The protein levels of claudin-5, occludin, ZO-1, JNK, p-JNK, P38, p-P38 and MMP-9 in the brain tissues were determined by Western blot.RESULTS: Compared with CIR model group, ATRA at 30 mg/kg significantly improved neurological function, and decreased cerebral infarction volume, brain water content, Evans blue content and the degradation of tight junction proteins in ischemic area (P<0.01). The activity and protein expression of MMP-9 in ischemic brain tissue were decreased (P<0.01). The phosphorylation of JNK and P38 was inhibited and the protein levels of p-JNK and p-P38 were decreased (P<0.01).CONCLUSION: ATRA reduces the damage of brain tissue and the destruction of blood-brain barrier induced by CIR in rats. The protective effect may be related to inhibiting the activation of JNK/P38 MAPK signaling pathway and MMP-9.  相似文献   
77.
AIM: To study the effect of fibroblast growth factor receptor 1 (FGFR1) expression knock-down on the viability, apoptosis, invasion and migration of infantile hemangioma endothelial cells (HemECs). METHODS: FGFR1 was down-regulated by FGFR1 small interfering RNA (si-FGFR1) transfection. The viability of the cells was measured by CCK-8 assay. The apoptotic rate was analyzed by flow cytometry and the invasion and migration abilities were determined by Transwell assay. The protein levels of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), and phosphorylated AKT (p-AKT) were examined by Western blot. RESULTS: Transfection of si-FGFR1 into HemECs had significant effects on inhibiting cell viability (P<0.05), promoting apoptosis (P<0.05), and decreasing cell invasion and migration abilities (P<0.05). The results of Western blot showed that knockdown of FGFR1 gene expression in the cells reduced the protein levels of PI3K and p-AKT (P<0.05), and had no significant effect on AKT protein level. CONCLUSION: Knock-down of FGFR1 expression changes the biological characteristics of endothelial cells in infantile hemangiomas by regulating PI3K/AKT signaling pathway.  相似文献   
78.
AIM:To analyze the effect of autophagy on inflammatory response regulated by doxycycline in lipopolysaccharide (LPS)-stimulated THP-1 cells and to investigate its molecular mechanism. METHODS:A human monocyte/macrophage cell line THP-1 was stimulated with LPS to establish an cell model of inflammatory response, and the cells were treated with doxycycline. The cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-8 (IL-8), in cell culture supernatant were measured by ELISA for evaluating the inflammatory levels. For determining the level of autophagy and its effect on inflammatory cell signaling pathways, the protein levels of LC3B, nuclear factor κB (NF-κB) and phosphorylated mammalian target of rapamycin (p-mTOR) were determined by Western blot. 3-Methyladenine (3-MA), an autophagy inhibitor, and rapamycin, an autophagy inducer, were used to study the effect of autophagy on inflammatory response regulated by doxycycline in LPS-stimulated THP-1 cells. RESULTS:The levels of TNF-α and IL-8 were increased rapidly and peaked at 12 h in LPS-stimulated THP-1 cells (P<0.05). Doxycycline significantly inhibited LPS-induced cytokine production in the THP-1 cells. Doxycycline up-regulated LPS-induced autophagy in THP-1 cells and doxycycline itself was an autophagy inducer. The protein levels of p-mTOR was up-regulated by LPS and down-regulated by doxycycline, suggesting that doxycycline induced autophagy via mTOR-dependent pathway while LPS through mTOR-independent pathway. Further studies showed that the combination of LPS, rapamycin and doxycycline inhibited the protein levels of NF-κB, and rapamycin increased the inhibitory effect of doxycycline on cytokine releases. Conversely, 3-MA, the autophagy inhibitor, attenuated the inhibitory effect of doxycycline on NF-κB and cytokine production. CONCLUSION:Autophagy is involved in the process of doxycycline modulating LPS-induced inflammatory response in the THP-1 cells.  相似文献   
79.
丁旻  刘波  陈春 《中国农学通报》2019,35(36):110-115
为进一步加强云闪分布特征分析,增强对雷暴云内物理过程的认识,利用2015—2017 年VLF/LF三维闪电探测系统的数据资料对贵州省闪电特征进行空间和时间分布特征分析。结果表明:无论云闪还是地闪,均以负闪为主;闪电发生主要集中在夏季,冬季闪电最少,闪电月际分布主要为单峰型,仅冬季Z比率大于1;闪电主要发生时段为16 时至次日凌晨2 时,Z比率与全闪频数随时间的变化呈正相关,相关系数0.618;全省闪电密度整体呈西高东低趋势,年均闪电密度为5.07 次/(a ·km2);云闪主要发生在高度2k~7 km,全年云闪高度呈下降趋势;雷电强度主要分布在5k~45 kA,平均陡度为7.34 kA/μs。本研究有利于对闪电特征开展更全面的探究和分析,同时对强对流天气监测和预警也有重要意义和价值。  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号