首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   254篇
  免费   12篇
  国内免费   8篇
林业   8篇
农学   6篇
基础科学   1篇
  113篇
综合类   125篇
农作物   4篇
水产渔业   8篇
畜牧兽医   3篇
园艺   3篇
植物保护   3篇
  2024年   2篇
  2023年   2篇
  2022年   6篇
  2021年   4篇
  2020年   8篇
  2019年   8篇
  2018年   4篇
  2017年   14篇
  2016年   16篇
  2015年   11篇
  2014年   11篇
  2013年   13篇
  2012年   16篇
  2011年   24篇
  2010年   24篇
  2009年   12篇
  2008年   16篇
  2007年   26篇
  2006年   21篇
  2005年   16篇
  2004年   12篇
  2003年   3篇
  2001年   3篇
  2000年   1篇
  1998年   1篇
排序方式: 共有274条查询结果,搜索用时 31 毫秒
31.
对北京市郊农田土壤中多环芳烃(PAHs)的种类、含量进行研究,并对其来源和生态风险进行探讨,以期了解京郊农田土壤中PAHs的污染现状和潜在风险,为农业环境保护提供科学依据和理论支持。结果表明:16种PAHs全部检出的检出率为74.4%,PAHs总含量(∑PAHs)范围为7.19~1 811.99 ng·g-1,平均值为460.75 ng·g-1;土壤中PAHs的组成结构主要以2~4环为主,占总含量的78.2%,主要来源为石油和煤的高温燃烧。风险评价结果显示,京郊农田土壤已受到PAHs污染,并具有潜在生态风险。  相似文献   
32.
Background, aims, and scope  Sediments and soils in coastal areas are frequently polluted by anthropogenic contaminants as the result of both riverine or terrestrial discharge and autochthonic marine emissions. In order to determine petrogenic contamination in the coastal industrial area of Kavala City in northern Greece, a combination of polycyclic aromatic hydrocarbon (PAH) and organic geochemical petroleum biomarker analyses has been performed on marine and freshwater sediments as well as soils. Materials and methods  Soils, freshwater, and marine sediments have been treated by standard extraction methods. The dried and desulphurized sample extracts have been fractionated by column chromatography, followed by addition of surrogate standards. Qualitative and quantitative data were obtained by gas chromatograph connected with a flame ionization and electron capture detector (GC-FID/ECD) and by GC linked to a mass spectrometer (GC/MS), whereas identification of compounds was based on EI+-mass spectra and gas chromatographic retention times. Quantitative data were obtained by integration of specific ion chromatograms. Results  The total PAH concentrations measured in the area varied highly, showing different levels from 18 up to 318,000 ng g−1 dry weight (dw). Several PAH ratios, as well as the ratio of pristane (Pr) to phytane (Phyt), have been considered. Out of 39 samples, 22 revealed a specific distribution of hopane fingerprints indicating petrogenic input. Finally, in numerous samples, the ratio of 17α(H)-22,29,30-trisnorhopane (Tm) and 18α(H)-22,29,30-trisnorhopane (Ts) was calculated, as well as the ratio of 22S-17α(H),21β(H)-30 homohopane (αβC31-hopane 22S) and 22R-17α(H),21β(H)-30 homohopane (αβC31-hopane 22R). Discussion  Based on the specific PAH ratios, a group of samples was clearly characterized to be contaminated dominantly by combustion-derived emissions, whereas a second group of samples exhibited mixed influence from petrogenic and pyrogenic PAHs. On the other hand, the exhibition of specific hopane fingerprints in many samples indicates a direct petrogenic input. Finally, the values of the ratio of Tm/(Ts + Tm) and of αβC31-hopanes 22S/(22S+22R)-isomer demonstrated an input of highly mature organic matter that has to be clearly attributed to petroleum-derived contamination, while the ratio of Pr/Phyt showed that most samples exhibited an input of organic matter. Conclusions  The coastal area of Kavala is strongly affected by anthropogenic contaminants. Petrogenic emissions were pointed out firstly by PAH analyses that separated dominantly pyrogenic contaminated sites from areas affected by both pyrogenic and petrogenic emissions. However, analyses of organic geochemical biomarkers revealed a much higher sensitivity in identifying petroleum-derived contaminations and were successfully used to differentiate several petrogenic contaminations in the marine and terrestrial samples. Recommendations and perspectives  Based on this study, it was recommended to use a complementary approach of source-specific substances to successfully characterize petrogenic emissions. Generally, a PAH-based source identification of petrogenic versus pyrogenic contaminations should be combined with petroleum biomarker analysis. PAH and biomarker ratios as well as individual biomarker fingerprints revealed a more comprehensive view on the quality and quantity of petrogenic emissions in sediments and soils.  相似文献   
33.

Goal, Scope and Background

Distribution of hydrophobic organic contaminants in abiotic compartments is essential for describing their transfer and fate in aquatic ecosystems. Taihu Lake is the third largest freshwater lake in China. Water quality of Taihu Lake has deteriorated greatly during the last decades and has threatened the water supply. The aim of the present study was to investigate the partitioning of polycyclic aromatic hydrocarbons (PAHs) among overlying water, suspended particulate matter (SPM), sediments, and pore water in Meiliang Bay, Taihu Lake and to provide useful information for the ecological engineering in this area.

Materials and Methods

Overlying water and surface sediment were sampled from six sites in Meiliang Bay, Taihu Lake, China. Within 72 h of sampling, sediments were centrifuged to obtain the pore water. Overlying water samples were filtered to separate dissolved and SPM samples. After extraction, samples were purified following a clean-up procedure. PAH fraction was obtained by elution with a mixture of hexane: DCM (7:3, V/V) and analyzed by GC/MS.

Results

PAHs concentrations in overlying water varied from 37.5 ng/L to 183.5 ng/L. Concentrations of PAHs in pore water were higher than those in overlying water. The total concentrations of 16 priority PAHs in sediments ranged from 2091.8 ng/g-dw to 4094.4 ng/g-dw. PAHs concentrations on SPM were decreased with suspended solid concentrations (SSC). Total PAHs concentrations on SPM varied in the range of 3369.6 ng/g-dw to 7531.1 ng/g-dw. The partition coefficients between sediment and overlying water (log K oc) for PAHs with log K ow<5 were positively correlated with their octanol-water partition coefficients (log K ow) (n=39, r=0.79, p<0.0001). Partition coefficients between sediment and pore water (log K oc′) for all PAHs were also significantly correlated with their log K ow values (n=48, r=0.82, p<0.0001).

Discussion

In general, PAHs derived from combustion sources tend to bind strongly to soot particles in natural sediment. Consequentially, K oc values observed in the natural environment could be orders of magnitude higher than those predicted by linear correlation relationships under laboratory conditions. In the present study, the ratio of log K oc values to log K ow values falls consistently above 1, indicating that the sediment soot carbon in the bay was more attractive for PAHs than n-octanol. The log K oc′ was also higher than that predicted under laboratory conditions, suggesting that the measured pore water PAH concentrations were lower than those predicted. That is to say, not all the sediment PAHs can be available to partition rapidly into sediment pore waters. A variation in soot content is a possible reason. Furthermore, concentrations of PAHs on SPM were higher than those in sediments. The compositions of PAHs on SPM and in sediments were similar, indicating the importance of re-suspension process of sediments in the partitioning process of the shallow lake.

Conclusions

The results indicated the equilibrium partitioning model could be used to predict PAHs distribution in various phases of a shallow lake in the stagnation period, but re-suspension processes should be considered to modify the relationship between log K ocs and log K ows.

Recommendations and Perspectives

Concentration, particle size and composition of resuspended particles could affect the relationship between log K ocs and log K ows. Further work should be done under field conditions, especially where a steady thermodynamic equilibrium state could be assumed.
  相似文献   
34.
以土壤微生物生物量和土壤酶活性等为土壤微生物变化指标,研究了含油污水长期灌溉对东北沈抚灌区农田土壤微生物的影响.结果表明:土壤微生物生物量碳和生物量氮随着污灌有机物污染程度的增加而增加,与土壤石油烃(TPH)含量极显著正相关,相关系数分别为0.955和0.962(P<0.01);与土壤多环芳烃(PAHs)含量也极显著正相关,相关系数为0.941和0.946(P<0.01).土壤酶活性分析表明,土壤脱氢酶和多酚氧化酶与土壤TPH含量极显著正相关,相关系数分别为0.977和0.958(P<0.01);与PAHs含量也极显著正相关,相关系数分别为0.997和0.977(P<0.01).土壤中的脲酶受污水灌溉中含N物质的影响与TPH含量显著相关,相关系数为0.713(P<0.05),与PAHs污染无明显相关性.而纤维素酶与土壤有机物污染无明显相关关系.土壤微生物生物量和土壤脱氢酶、多酚氧化酶可以作为污灌土壤TPH和PAHs污染敏感的生物学和生物化学指标.  相似文献   
35.
分子标志物参数在识别土壤多环芳烃(PAHs)来源中的应用   总被引:6,自引:0,他引:6  
土壤中PAHs污染物的成因十分复杂,常见的污染源包括生物质的高温降解产物、石油等化石燃料及其不完全燃烧产物等,其输入方式主要有大气中所含PAHs的干、湿沉降、水体输入、固体废弃物排放等。不同成因的PAHs组成特征有一定差别,并可能具有独特的分子标志物或分子化合物组合特征,由此,可以根据环境介质中PAHs的组成特征判断污染物来源或成因类型。目前,分子标志物特征参数已成为追踪PAHs污染来源的有效手段。介绍了近年来国内外在运用PAHs分子标志物特征参数识别土壤中PAHs污染源方面的主要研究进展、应用潜力及存在的问题。  相似文献   
36.
不同栽培环境下豇豆体内多环芳烃源解析及风险评估   总被引:2,自引:1,他引:1  
为了探讨不同污染特征环境下栽培的蔬菜体内多环芳烃(PAHs)来源及风险,以豇豆[Vigna unguiculata(Linn.)Walp]为材料,检测大棚(试验基地PAHs污染残留区)和大田(距离机动车通道100 m内)栽培的豇豆体内PAHs含量,采用同分异构体比值法分析了其体内PAHs来源,并用生态效应低中值法和苯并(a)芘毒性等效当量法评估了豇豆体内PAHs污染的生态风险,以人群日均暴露量估算了其潜在人体健康风险。结果表明:在16种优控的PAHs中,大棚豇豆体内含有13种,大田豇豆体内含有6种;大棚豇豆体内的PAHs总含量为253.94μg·kg-1,以2~4环为主,其中3环占总含量的64.47%。大田豇豆体内PAHs总含量为80.60μg·kg-1,芴和菲占总含量的69.69%。大棚和大田豇豆体内的二苯并(a,h)蒽毒性当量分别为43.32μg·kg-1和10.85μg·kg-1,其对总的毒性当量贡献率分别为89.38%和88.57%;大棚和大田豇豆的人群健康风险系数分别为2.07×10-6和6.5×10-7。研究表明:大棚豇豆体内PAHs主要源于人为处理残留的PAHs;大田豇豆体内PAHs主要来源于汽油和生物质燃烧污染。大棚豇豆存在一定的生态风险和健康风险,大田豇豆尚不存在PAHs的生态风险和健康风险,但需重视苯并(k)荧蒽、二苯并(a,h)蒽和茚并(1,2,3-c,d)芘等物质的富集作用。  相似文献   
37.
多环芳烃污染土壤修复技术研究进展   总被引:2,自引:0,他引:2  
多环芳烃化合物(PAHs)是一类广泛分布于全球各种环境介质的持久性有机污染物。近年来,土壤PAHs污染日益加剧,因此对PAHs污染的土壤进行有效修复备受关注。从生物修复法、物理修复法、化学氧化法、光降解法等方面,概述了近年来国内外PAHs污染土壤的主要修复技术。  相似文献   
38.
城市污水处理厂污泥中含有较高浓度的有毒有害物质多环芳烃(PAHs),且污泥产量大,如果不经过处理直接农业利用或堆放会导致土壤和作物的污染。本研究利用污泥和土壤不同配比组合(W0%,泥土比0∶1;W25%,泥土比1∶3;W50%,泥土比1∶1;W75%,泥土比3∶1;W100%,泥土比1∶0)的盆栽试验,探讨无芒雀麦-污泥系统对污泥多环芳烃的修复效果。研究结果表明,随污泥含量增加对无芒雀麦株高的影响差异不明显,而生物量却呈现出明显的上升趋势。无芒雀麦对污泥的耐受性表现良好;无芒雀麦对泥/土组合14种PAHs的吸收总量以W100%处理最高,且对3环、4环多环芳烃的吸收量比其他环数优势明显;在不同泥/土组合处理下,无芒雀麦-污泥系统对泥/土14种PAHs总量的去除率在W50%、W75%、W100%处理间没有明显差异,以W75%组合去除率为最高,达85.4%。且含有污泥的所有组合对高环芳烃Pyr、Chry、BaA、BbF、BkF、BaP、InP单体的去除优势表现非常突出,均达到80%或90%以上。综合考虑无芒雀麦的生长状况、吸收量及去除率认为,将耐抗性和去除率高的无芒雀麦作为优选植物资源直接用于城市污泥PAHs的修复是可行的,且以泥土比3∶1为最佳修复组合。  相似文献   
39.
针对国内缺乏土壤中多环芳烃(PAHs)检测的国家标准方法的现状,以提取效率和回收率作为不同溶剂、不同提取方式前处理优劣的表征,研究了目前国内较常用的3种提取技术(索氏提取、超声波提取、水平振荡提取)和2种不同的提取剂(二氯甲烷、二氯甲烷/丙酮=5:1)对提取效率和回收率的影响。结果表明,以二氯甲烷作为提取溶剂,水平恒温振荡提取4h,可以有效地提取土壤中的15种多环芳烃类污染物。此技术提取时间短,节省提取溶剂且提取效率较高,方法回收率在73.3%-117.5%范围内。  相似文献   
40.
The impact of low-molecular-weight organic acids (LMWOAs) on the availability of phenanthrene and pyrene was investigated using laboratory batch assays. Experiments were conducted with two types of soil with different organic contents. The LMWOAs used were citric and oxalic acid. A mild solvent extraction procedure and a sorption-desorption experiment were used to predict the availability of phenanthrene and pyrene. Results showed that the extractable amounts of phenanthrene and pyrene in both soil types increased with increased citric or oxalic acid concentration. Citric acid addition promoted phenanthrene and pyrene extraction to a greater degree than oxalic acid. Compared with freshly spiked soils, the extractable amounts of phenanthrene and pyrene with the addition of LMWOAs decreased significantly after 60 days of cultivation. Soils with higher values of soil organic carbon content (foc) showed decreased phenanthrene and pyrene availability after the addition of LMWOAs. The sorption and desorption results also demonstrated the enhanced availability of PAHs with LMWOA addition. Phenanthrene sorption could be described using a linear model, regardless of the addition of LMWOAs. The simulated distribution constants (Kd) for phenanthrene sorption decreased significantly with the addition of LMWOAs. In contrast, phenanthrene desorption clearly increased with the addition of LMWOAs. These results suggest that the availabilities of phenanthrene and pyrene can be increased with the addition of suitable LMWOAs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号