首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1815篇
  免费   151篇
  国内免费   116篇
林业   17篇
农学   129篇
基础科学   19篇
  513篇
综合类   1069篇
农作物   93篇
水产渔业   71篇
畜牧兽医   138篇
园艺   24篇
植物保护   9篇
  2024年   13篇
  2023年   66篇
  2022年   97篇
  2021年   123篇
  2020年   95篇
  2019年   119篇
  2018年   95篇
  2017年   133篇
  2016年   130篇
  2015年   94篇
  2014年   87篇
  2013年   151篇
  2012年   167篇
  2011年   99篇
  2010年   96篇
  2009年   93篇
  2008年   51篇
  2007年   81篇
  2006年   52篇
  2005年   53篇
  2004年   34篇
  2003年   30篇
  2002年   16篇
  2001年   16篇
  2000年   16篇
  1999年   8篇
  1998年   18篇
  1997年   11篇
  1996年   3篇
  1995年   5篇
  1994年   5篇
  1993年   7篇
  1992年   1篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
排序方式: 共有2082条查询结果,搜索用时 156 毫秒
101.
为了探究柠檬酸与植物联合修复镉污染土壤的效果,采用盆栽试验,研究外源柠檬酸的添加对萱草(Hemerocallis fulva)、鸢尾(Iris tectorum Maxim.)和美人蕉(Canna indica L.)3种观赏植物修复镉污染土壤的影响.结果表明:(1)与CK和未添加柠檬酸处理组相比,柠檬酸添加显著降低了土壤的pH值.(2)柠檬酸的添加显著改善了萱草、鸢尾和美人蕉的生长状况,植物的株高、根长和生长量最大值均出现在添加柠檬酸中浓度镉污染(Tm)处理中,其单株生物量最高值分别为13.97、23.92和56.95 g.(3)在CK和未添加柠檬酸处理组中,萱草、鸢尾和美人蕉的地上部分镉含量低于地下部分,其差值变化范围分别为-5.09~-41.06、-6.44~-49.77和-15.35~-53.80mg·kg-1;而柠檬酸的添加促进了地下部分镉向地上部分的转移,使地上部分镉含量高于地下部分,其差值变化范围分别为9.98~42.50、9.51~44.93和16.10~47.59 mg·kg-1.(4)萱草、鸢尾和美人蕉3种观赏植物在添加柠檬酸处理组中的转运系数大于1,显著增加了植株地上部分的镉积累量,且美人蕉的地上部分和地下部分镉积累量明显高于萱草和鸢尾,其最高值分别为7 603.39和1 545.60 μg·株-1.综上所述,萱草、鸢尾和美人蕉3种观赏植物均可作为土壤镉污染修复植物使用,添加柠檬酸可有效提高3种观赏植物对镉污染土壤的修复效率.美人蕉由于植株高大和块状根茎的特性,使其表现出比萱草和鸢尾更强大的镉修复能力.  相似文献   
102.
为研究鸢尾属植物对镉吸收特征的差异及鸢尾植物超微结构在镉胁迫下的变化,进行了10个鸢尾品种的盆栽试验研究,并分析了不同品种鸢尾在镉含量20 mg·kg-1下镉积累差异及4个品种鸢尾超微结构情况.结果 表明:(1)玉蝉花(Iris ensata Thunb.)的根系镉富集系数和植株镉积累总量最高,分别为1.02 μg·μg-1和60.6 μg.镉胁迫对株高、叶宽和叶片数有轻微抑制作用,而对地上及根系物质量有较强的抑制作用.其中,地上部鲜重和生物量的减少率分别为20.14%和15.60%,根系鲜重和生物量的减少率分别为12.54%和7.67%,由于物质量受镉胁迫影响较小,故适用于镉污染地区的修复植物.(2)蝴蝶花(Iris tectorum)根系富集系数和镉积累总量均较高,分别为0.14 μg.μg-1和19.01 μg;其叶宽和株高分别增加了2.47%和5.84%,其生长受到一定的促进作用,表明其具有很强的镉适应性,可用于作为镉污染地区的替代种植植物.(3)黄菖蒲(Iris pseudacorus)、守夜者(Iris night ruler)和胜利者(Iris nelson)镉积累总量较低,分别为17.62、15.90和11.80 μg,同时生长受到的影响较小,可用于镉污染地区的园林植物种植.(4)其他品种镉积累量极低,生长受到的抑制作用大,不适宜在镉污染地区种植.(5)镉胁迫可导致鸢尾属植物细胞变形、质壁分离,线粒体结构破碎、溶解,叶绿体肿胀、片层结构紊乱或溶解,而细胞核形态变化不明显.研究结果为鸢尾属植物改良重金属土壤提供了科学依据,同时为重金属污染地区的园林应用提供参考.  相似文献   
103.
为探讨小麦秸秆生物质炭对镉(Cd)污染碱性土壤的修复效果,采用序批式吸附试验和Cd污染土壤盆栽试验,研究了小麦秸秆生物质炭施用(1%,m/m)对碱性土壤吸附Cd的影响,以及对Cd污染土壤中油菜生长和Cd吸收的影响。结果表明:Cd在生物质炭上的吸附等温线非线性较强,生物质炭对Cd的表面吸附起主导作用,Cd在生物质炭上的分配系数(Kd)是在土壤上的1.5~3.0倍。生物质炭施用可促进土壤对低浓度Cd的吸附,0.1 mg·L-1平衡浓度下Kd值提高了19.5%;生物质炭施用可抑制土壤对高浓度Cd的吸附,在10 mg·L-1条件下Kd值降低了37.2%。生物质炭施用对土壤pH值影响不显著,但缓解了Cd污染对油菜生长的抑制作用,油菜生物量最高提高了45.0%,也抑制了油菜对Cd的富集,油菜富集Cd的量最高降低了40.6%;CaCl2、Mg(NO32、NH4OAC、HCl、DTPA和BCR1作为提取剂提取出土壤中Cd的量与油菜地上部分吸收Cd的量相关性较强(线性回归方程决定系数R2> 0.8),而Mg(NO32萃取出土壤中Cd的量更能预测油菜地上部分吸收Cd的量。研究表明,小麦秸秆生物质炭有利于降低碱性土壤中Cd的生物有效性,但并非通过提高土壤pH值和吸附能力来实现。  相似文献   
104.
为探究Cd胁迫下丛枝菌根真菌(AMF)对植物根系和土壤微环境的影响,以黑麦草为供试植物、变形球囊霉(Glomus versiforme)为供试AMF,以Cd浓度(0、10、20、30 mg·kg-1)和是否对黑麦草接种AMF为双因素,设计8个处理,开展盆栽试验。结果显示:随着Cd浓度增加,AMF侵染率和孢子数量显著(P<0.05)降低。相同Cd浓度下,接种AMF显著(P<0.05)改善了黑麦草的根系构型(根系总长度、根系总投影面积、根系总体积、根尖数、根分叉数)。在相同Cd浓度下,接种AMF显著(P<0.05)增加了土壤中真菌、细菌和放线菌的数量,土壤微生物生物量碳、微生物生物量氮含量,以及土壤多酚氧化酶活性,和土壤易提取球囊霉素相关土壤蛋白和总球囊霉素相关土壤蛋白含量。这说明,接种AMF能够通过改善植物根系和微生物环境、提高土壤相关酶活性和球囊霉素含量等,增加植物抗性。  相似文献   
105.
为了探索铅镉胁迫下苹果酸、草酸对刺槐生长与离子富集特性的影响,本试验以刺槐植株为研究对象,在600mg/kg铅、20mg/kg镉污染土壤中添加不同浓度的苹果酸、草酸,测定刺槐生长量、铅镉含量和离子转移特性等指标。试验结果表明,苹果酸和草酸对铅镉胁迫下刺槐植株生长有一定程度的抑制作用,但差异不显著;两者促进刺槐根部的铅、镉离子富集,但降低了铅、镉离子的转运率,其中8.0mmol/kg草酸的铅富集促进效益最显著。因此,8.0mmol/kg草酸可作为一种外源调控手段应用于刺槐修复铅镉污染土壤的实践中。  相似文献   
106.
为探究灌木幼苗及不同测试终点对镉(Cd)毒害的抗性和敏感性差异,选取了12种常见的灌木植物,通过Cd对灌木幼苗毒害的水培试验,测定不同含量Cd处理[0(对照)、0.5、1.0、2.0、4.0、8.0、16.0、32.0 mg·L-1]下植物的生长状况(表观毒害症状、株高、地上部鲜重和干重、根系生长状态),比较不同测试终点稳定性,并运用Burr-Ⅲ模型制作物种敏感性分布图(species sensitivity distributions,SSD),分析不同灌木幼苗对Cd的敏感性。结果表明,供试植物在Cd含量为1.0~4.0 mg·L-1时开始出现表观毒害症状;Cd对不同的植物地上部和根系毒害阈值差异较大,地上部干重减少10%(EC10)和50%(EC50)对应的毒性阈值变化范围分别为0.11(海桐)~1.30 mg·L-1(八角金盘)和2.58(金森女贞)~10.90 mg·L-1(八角金盘),差异分别达到了11.8和4.2倍;根分支数对应的EC10和EC50变化范围分别为0.08(金森女贞)~1.27 mg·L-1(八角金盘)和2.40(金森女贞)~10.30 mg·L-1(八角金盘),差异分别达到了15.8和4.3倍;不同测试终点的敏感性从大到小依次为根分枝数>总根长>总根表面积>总根尖数>地上部分干重>株高>地上部分鲜重,说明根系指标对Cd毒性更为敏感;基于地上部干重和根分支数的EC50数据得到的SSD表明,大部分植物的敏感性分布趋于一致,其中金森女贞和海桐对Cd毒害最为敏感,八角金盘为Cd毒害的抗性品种;同时,根据SSD得出保护95%林木品质不受Cd毒害的生态风险阈值HC5。  相似文献   
107.
对重金属具有良好吸附能力的金属氧化物改性生物炭材料是近年来热门的土壤修复材料,然而关于不同金属氧化物改性生物炭对土壤中Cd钝化的研究较少。本研究采用Cd污染农田土壤开展菠菜盆栽试验,研究了铁氧体改性生物炭、磁铁矿改性生物炭和水滑石改性生物炭对菠菜生长和Cd积累的影响。结果表明:在施用量均为5 g·kg-1的条件下,金属氧化物改性生物炭处理可显著提高土壤pH和有机质含量。与对照相比,铁氧体改性生物炭、磁铁矿改性生物炭和水滑石改性生物炭使土壤DTPA-Cd含量分别降低了23.4%、24.8%和37.1%,生物富集系数降低了4.00%、13.3%和65.0%。此外,水滑石改性生物炭使植株干质量增加4.27倍,显著降低了Cd积累量(59.5%)。金属氧化物改性生物炭能提高土壤pH,增加土壤有机质含量,降低土壤Cd的有效性和移动性,提高土壤质量,进而促进菠菜的生长和抑制菠菜对Cd的积累。研究表明,水滑石改性生物炭在促进菠菜生长和钝化土壤Cd方面具有较大优势。  相似文献   
108.
为探究镉胁迫对大薸(Pistia stratiotes)生长的影响及其体内镉积累与分布特征,用不同镉浓度(0、10、25、50、75、100 μmol·L-1)的营养液处理大薸18 d,测定植株生物量、生长形态及其体内镉含量,并分析叶片中镉的亚细胞分布和化学形态。结果表明:随着镉浓度的增加,大薸生物量、冠径、叶片数、分株数和镉富集系数均呈降低趋势,地上部镉含量和镉转移系数呈上升趋势,地下部镉含量、总镉含量、单株富集量呈先上升后降低的趋势。在各处理下,大薸地下部镉含量均大于地上部。当镉浓度>10 μmol·L-1时,大薸叶片细胞壁组分镉的占比最大(42.61%~46.91%),其次是细胞器组分(27.04%~39.72%)和可溶性组分(17.68%~26.06%)。细胞壁和可溶性组分镉的占比随着镉浓度的增加呈上升趋势,细胞器组分则呈下降趋势。大薸叶片中镉主要以醋酸提取态为主(35.00%~59.06%),其次是氯化钠提取态(16.72%~26.45%)和水提取态(7.77%~33.22%)。研究表明:大薸通过根系固持、细胞壁固定和液泡区室化避免严重镉胁迫损伤,通过醋酸提取态贮藏降低镉毒性和移动性;10~100 μmol·L-1镉处理18 d后,大薸可维持较高的镉富集量和较低的生物量,在进行镉污染水体生态修复的同时避免因其快速生长而引起水体二次污染。  相似文献   
109.
不同母质类型红壤的镉吸附及其形态转化特征   总被引:1,自引:0,他引:1  
为探明红壤的镉吸附能力及吸附态镉的赋存形态和分配比例,丰富红壤重金属镉污染的理论基础,为红壤镉污染的修复治理提供科学依据,采用恒温培养试验的方法,研究了湘南丘岗区3种典型母质类型红壤的镉吸附和转化特征。结果表明:3种母质类型红壤对外源有效态镉均有较高的吸附容量。其中,以板岩风化物发育的红壤最高,第四纪红土母质发育的红壤次之,而石灰岩风化物发育的红壤相对较低。红壤对外源有效态Cd的吸附是一个快速的反应过程,交换及碳酸盐结合态镉在培养2~12h即达到平衡,随后向不同镉形态转化,约168h后趋于稳定。从红壤吸附态镉的形态分布看,交换及碳酸盐结合态镉是土壤吸附态镉的主要形态,占土壤总吸镉量的53.3%~64.4%,其次为Fe和Mn氧化物结合态镉,占28.4%~32.8%,有机物及硫化物结合态镉和残渣态镉所占比例较少,占7.2%~15.7%。同时,土壤pH值是影响土壤镉吸附容量和镉化学形态的最重要因素。土壤酸化会加剧重金属镉的活化和溶出,提高吸附态镉的生物有效性。  相似文献   
110.
四尾栅藻对重金属镉胁迫的响应   总被引:2,自引:0,他引:2  
通过不同浓度镉(0、0.5、1、3、5、7 mg·L-1)胁迫实验,对四尾栅藻(Scenedesmus quadricauda)的生长、色素、过氧化氢、超氧化物阴离子、可溶性蛋白含量进行分析,研究四尾栅藻对重金属镉胁迫的响应情况。实验显示:镉胁迫使四尾栅藻的生长受到抑制,在较高镉浓度(3~7 mg·L-1)下四尾栅藻的生长受到强烈抑制;随着镉浓度的上升,色素(叶绿素a、叶绿素b、类胡萝卜素)含量逐渐减少,过氧化氢、超氧化物阴离子含量增加,过氧化氢含量在镉浓度为5~7 mg·L-1时显著增多,超氧化物阴离子含量在镉浓度为7mg·L-1时显著增加;可溶性蛋白含量先增加,并在镉浓度为1 mg·L-1时达到最大值,之后随着镉浓度的上升而逐渐减小。研究结果表明,四尾栅藻对重金属镉有较好的耐受性(可以耐受1 mg·L-1的镉)。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号