首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
  国内免费   4篇
农学   3篇
基础科学   1篇
综合类   7篇
农作物   4篇
  2023年   3篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2012年   1篇
  2001年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
11.
DNA去甲基化酶(dMTase)是一种高度保守的表观遗传修饰因子,涉及许多生物学过程,包括生长发育、应激反应和次生代谢。本研究基于小麦基因组数据,对小麦 DNA去甲基化酶基因(TadMTase)进行了全面鉴定和生物信息学分析。结果表明,小麦基因组中包含18 个TadMTase基因,分布于小麦15条染色体上。系统进化分析将TadMTase分为 ROS、DML3、DML4 和 DML5等 4个亚家族,亚家族之间的TadMTase基因序列长度和内含子数量存在差异,但同一个系统进化树分支中的亚族成员具有高度相似的基因结构、保守 motifs 和结构域,为植物dMTase基因家族的直系同源基因,在进化方面具有保守性。亚细胞定位预测TadMTase均定位于细胞核中;通过与小麦祖先物种的进化及共线性分析,发现在小麦异源六倍体形成过程中存在部分TadMTase基因丢失;TadMTase基因家族启动子区域包含大量光信号、植物激素、胁迫响应和生长发育等相关顺式作用元件;转录组数据分析表明TadMTase基因在不同组织器官和籽粒发育不同时期表达模式不同,有一定的组织特异性。进一步RNA-Seq和荧光定量PCR分析表明TaROS1b-1A.1TaROS1a-5A/D分别在籽粒的种皮和胚乳发育时期显著上调表达,且在强筋和弱筋小麦品种中表达存在差异。结果为TadMTase 基因在调控小麦籽粒生长发育及其品质形成中的调控机制提供参考。  相似文献   
12.
利用春化基因Vrn-A1、Vrn-B1、Vrn-D1、Vrn-B3及光周期基因Ppd-A1、Ppd-B1和Ppd-D1的STS分子标记对选自江苏境内的114份小麦品种(系)进行检测,研究江苏小麦品种中春化和光周期基因的分布情况。结果表明:春化基因显性等位变异的分布频率依次为Vrn-D1a(57.9%)、Vrn-D1b(15.8%)、Vrn-A1b(5.3%)、Vrn-B1 (2.6%)和Vrn-B3 (0)。江苏淮南麦区中Vrn-D1a的分布频率最高(77.5%);江苏淮北麦区中Vrn-D1b的分布频率最高(38.2%)。江苏地区共存在6种春化基因等位变异组合:vrn-A1+vrn-B1+Vrn-D1a(56.1%)、vrn-A1+vrn-B1+vrn-D1 (21.1%)、vrn-A1+vrn-B1+Vrn-D1b(15.8%)、Vrn-A1b+vrn-B1+vrn-D1 (2.6%)、vrn-A1+Vrn-B1+vrn-D1 (2.6%)和Vrn-A1b+vrn-B1+Vrn-D1a(1.8%)。淮南麦区vrn-A1+vrn-B1+Vrn-D1a(75.0%)组合占主导地位;淮北麦区以vrn-A1+vrn-B1+vrn-D1 (50.0%)和vrn-A1+vrn-B1+Vrn-D1b(38.2%)组合为主。所有品种(系)均含有光周期敏感型基因Ppd-A1b和Ppd-B1b,有7个品种携带光周期敏感型基因Ppd-D1b,其余品种均携带光周期不敏感型基因Ppd-D1a,占93.9%。  相似文献   
13.
14.
选择扬麦4号和偃展1号杂交后开花期一致的49份重组自交系(recombinant inbred lines,简称RIL)材料为研究对象,在2个独立的区域采用单花滴注和土表接种2种方式,分别调查开花后14、28、42 d群体的病小穗数,计算病小穗率.分析2种接种条件下的各个时期群体的病小穗率绝对值和动态变化.结果表明,单...  相似文献   
15.
为了发掘新的抗赤霉病基因,以抗赤霉病新种质N553与扬麦13构建的包含184个家系的重组自交系(RILs)为材料,利用217对在双亲间具有多态性的分子标记构建遗传连锁图谱,利用该图谱对小穗密度、株高及赤霉病抗性进行QTL检测,并分析了小穗密度及株高与赤霉病抗性的相关性。结果表明,本研究共检测到5个赤霉病抗性相关QTL,其中1个效应较大的QTL位于2D染色体上,位于标记wmc18-cfd233之间,可解释8.17%~11.42%的表型变异;在3B染色体短臂上检测到1个QTL,位于标记barc102-gwm533之间,可解释5.33%~42.96%的表型变异。QFhb.jaas-2DS与QFhb.jaas-3BS聚合可显著增强小麦赤霉病抗性。另外3个QTL贡献率小于10%,分别位于染色体2B、3B、4A上。检测到与小穗密度相关的QTL有1个,位于3B染色体上,可解释5.36%~6.08%的表型变异。检测到与株高相关的QTL有5个,分别位于染色体4A、7A、5B、6B上,可解释5.2%~8.93%的表型变异。小穗密度与赤霉病抗性呈正相关,株高与抗扩展抗性无相关性,与抗侵染抗性呈负相关。结合以上QTL检测及相关性分析结果可知,QFhb.jaas-3BL可能不是赤霉病抗性位点。因此,包括QFhb.jaas-3BL在内的贡献率小于10%且仅在单一环境下检测到的3个赤霉病抗性相关QTL需进一步进行多年多点试验。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号