首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   6篇
林业   1篇
农学   11篇
  6篇
综合类   11篇
农作物   8篇
畜牧兽医   2篇
园艺   4篇
植物保护   16篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   2篇
  2014年   8篇
  2013年   5篇
  2012年   3篇
  2010年   2篇
  2009年   3篇
  2008年   8篇
  2006年   3篇
  2005年   3篇
  2004年   1篇
  2001年   1篇
  2000年   1篇
  1997年   2篇
排序方式: 共有59条查询结果,搜索用时 15 毫秒
11.
Plant-induced germination of Plasmodiophora brassicae resting spores was studied in a laboratory experiment. Spore reaction was analysed in nutrient solution with exudates from growing roots of different plant species – one host plant (Brassica rapa var. pekinensis) and four non-host plants (Lolium perenne, Allium porrum, Secale cereale and Trifolium pratense) – and in controls with distilled water and nutrient solution. It was found that root exudates from L. perenne stimulated spore germination more than exudates from the other plants, including those from the host plant. The effect could not be explained by differences in the nutritional composition of the solutions due to differential uptake of the plant species, or by differences in root activity, measured as exudation of soluble sugars. This is the first time such a separation of factors has been done in analysing the influence of plants on P. brassicae germination. Although stimulation of P. brassicae resting spore germination is not restricted to the presence of host plants, it seems to vary depending on the plant species.  相似文献   
12.
十字花科Brassicaceae植物多数生长发育时间短,生长过程中自然发生,或使用物理或化学方法诱导,常会出现一些颜色较淡或金黄的突变个体即黄化突变体。这些突变体表型直观,表现为植株矮小,叶绿素较低,植株光合作用受抑制,产量降低,因此黄化突变常被视为有害突变。但近20 a来黄化突变体日益受到研究者们的重视与青睐,被用于研究植物叶绿体结构、叶绿素合成代谢等方面。本研究简要介绍了十字花科植物常见的黄化突变类型及其主要的外观特征,综述了十字花科植物黄化突变体的叶绿体超微结构、光合色素及其光合性能,并对十字花科植物黄化突变的遗传特性、分子机制进行了讨论,为十字花科植物叶色突变研究及新品种选育提供理论基础。参52  相似文献   
13.
十字花科Brassicaceae包含蔬菜、油料作物、药用植物、观赏植物和染料植物等,是一类1年生、2年生或多年生的植物,是中国最重要的蔬菜和油料作物之一。蜡质的主要成分是超长链脂肪酸及其衍生物,十字花科植物的蜡质是其适应外界环境变化而形成的保护结构,在维持水分平衡、反射紫外线、减少外来机械损伤、降低低温伤害、抵御细菌真菌入侵、防止果实开裂与昆虫侵食等抵抗生物与非生物胁迫中起着重要作用。对十字花科植物蜡质类型、生理功能、遗传特性、合成与转运途径等方面进行综述,可为十字花科植物的蜡质代谢研究提供参考。图2表2参61  相似文献   
14.
为了解外来入侵植物银花苋(Gomphrena celosioides)的潜在生态危害,采用不同器官作供体对3种作物种子萌发和幼苗生长进行化感效应测试。结果表明:总体上,花、叶水提液低浓度处理对萝卜(Raphanus sativus)、芥菜(Brassica juncea)和菜心(B.parachinensis)种子的萌发率和根长生长有抑制作用,且随着浓度提高抑制程度加大,部分达极显著水平。低浓度的花、叶水提液对作物茎(芽)长生长有一定促进作用,但随着浓度提高促进作用降低,高浓度处理则出现显著抑制。比较综合效应指数,叶水提液比花水提液的化感作用强;叶水提液对3种作物的化感作用表现为芥菜>萝卜>菜心,而花水提液则为萝卜>芥菜>菜心。因此,作为外来入侵植物,银花苋因具较强的化感效应,需加强防治。  相似文献   
15.
Raphanus raphanistrum (Brassicaceae) is considered amongst the world's worst agricultural weeds. We address critical issues in its management by studying the pathway of colonisation at local scales. For this, we assessed the small‐scale spatial genetic structure of 231 samples collected from three different sites across the Cape Floristic Region, South Africa, using 11 nuclear microsatellite markers. Although natural pollen and seed dispersal were expected to be restricted, we found no significant relationship between genetic and geographical distance within sites. Instead, our results suggest that R. raphanistrum had colonised new habitats via jump dispersal, rather than through natural diffusive dispersal at local scales. We did not find evidence for road verges as dispersal corridors, as evidenced by a lack of isolation‐by‐distance at local scales. Instead, the absence of spatial genetic structure suggests that R. raphanistrum had rapidly spread throughout its current range, possibly facilitated by human‐mediated actions. Management plans addressing containment or suppression of the weedy species R. raphanistrum (and possibly other weedy species) should take the high degree of connectivity between distant geographical localities into account.  相似文献   
16.
Studies were conducted to investigate the crossability of the cultivated Brassica species, Brassica napus (oilseed rape), B. rapa (turnip rape), and B. juncea (brown and oriental mustard), with two related cruciferous weeds that are abundant in certain regions of Canada, Erucastrum gallicum (dog mustard) and Raphanus raphanistrum ssp. raphanistrum (wild radish). Seed was produced without recourse to embryo rescue from all reciprocal crosses except R. raphanistrum × B. juncea. Four hybrid plants were recovered, namely B. napus × E. gallicum, B. napus × R. raphanistrum (two plants), and B. rapa × E. gallicum. The hybrids were characterized by their morphology, RAPD analysis, and cytological examination. The B. rapa × E. gallicum hybrid was extremely vigourous and fertile, and would likely grow in natural habitats. This hybrid produced self-seed and backcrossed readily with the B. rapa parent and, to a lesser extent, with the E. gallicum parent. The B. napus × E. gallicum hybrid was a weak plant, but produced fertile backcross progeny with the E. gallicum parent. The B. napus × R. raphanistrum hybrids were vigourous but mostly sterile. Because of their low vigour and/or sterility, hybrids produced from crosses of B. napus with the cruciferous weeds would not likely be an environmental concern. However, the potential of the B. napus × E. gallicum and B. rapa × E. gallicum hybrids to backcross with E. gallicum may be of concern. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
17.
Nematode pests parasitise and cause substantial crop yield and quality losses to a wide range of crops worldwide. To minimize such damage, the exploitation and development of alternative nematode control strategies are becoming increasingly important, particularly as a result of global efforts to conserve the ozone layer as well as our soil and water substrates. Inclusion of Brassicaceae crops in cropping systems is one such alternative and has been demonstrated in most cases to be effective in managing the top-three rated economically important nematode pests, viz. root-knot (Meloidogyne), cyst (Heterodera and Globodera) and lesion (Pratylenchus) nematodes as well as others. In the past nematode pests were and still are generally managed successfully by the use of synthetically-derived nematicides, which are progressively being removed from world markets. However, fragmented and limited information about the use of Brassicaceae crops as a nematode management tool exists in various countries. The need thus arose to summarize, compare and discuss the vast amount of information that has been generated on this topic in a concise article. This paper therefore represents a comprehensive, practical and critical review of the use and effect(s) of Brassicaceae-based management strategies and the biofumigation and cover-crop/rotation characteristics of Brassicaceae in reducing nematode-pest population levels in global cropping systems.  相似文献   
18.
对十字花科棒果芥属8个物种的花粉形态进行了扫描电镜观察研究.结果表明,棒果芥属8个物种的花粉形态均为长球形(P/E =1.33~1.84);花粉粒具三孔沟,沟长达两极;极面观为三裂圆形,赤道面观为椭圆形;花粉具网状纹饰,稀粗网状纹饰,网眼为不规则的多边形.花粉数量特征在种间有一定差异,依据纹饰类型及萌发沟深浅均可将8种植物花粉分为2个类型.  相似文献   
19.
《Journal of plant nutrition》2013,36(5):1065-1083
Abstract

Ten cvs. of four Brassicaceae species were tested to evaluate their copper (Cu) uptake and translocation. Germination and root length tests indicated that Brassica juncea cv. Aurea and Raphanus sativus cvs. Rimbo and Saxa were the species with the highest germinability and longest roots at Cu concentrations ranging from 25 up to 200 µM. Raphanus sativus cv. Rimbo grown in hydroponic culture at increasing Cu concentrations (from 0.12 up to 40 µM) for 10 days produced a relatively high biomass (17.2 mg plant?1) at the highest concentration and had a more efficient Cu translocation (17.8%) in comparison with cvs. Aurea and Saxa. The potential of cv. Rimbo for Cu uptake was then followed for 28 days at 5, 10, and 15 µM Cu. In comparison with the control, after 28 days of growth the 15 µM Cu‐treated plants showed a reduction in the tolerance index (?40%) and in the above‐ground dry biomass (?19%). On the contrary, an increase in the below‐ground dry weight was observed (+35%). Copper accumulated during the growth period both in the below‐ and above‐ground parts (about 14 and 4 µg plant?1 at 10 and 15 µM Cu, respectively), but the translocation decreased from 50 to 30% in the last week at all the concentrations used. In addition, cv. Rimbo grown in a multiple element [cadmium (Cd), chromium (Cr), Cu, lead (Pb), and zinc (Zn)] naturally‐contaminated site accumulated all elements in the above‐ground part in a range from 5 to 62 µg plant?1.  相似文献   
20.
Abstract

To Elucidate The Genetic Mechanisms Underlying C3―C4 intermediate Photosynthesis, We investigated The Structural and Photosynthetic Characteristics of Leaves of Reciprocal Hybrids Between The C3―C4 intermediate Species Moricandia Arvensis (L.) Dc. (Mama) and The C3 Species Brassica Oleracea L. (Cabbage; Cc), Which Differ in Genome Constitution. Moricandia Arvensis Bundle Sheath (Bs) Cells included Many Centripetally Located Chloroplasts and Mitochondria, Whereas Those of Cabbage Had Few Organelles. Hybrid Leaves Were Structurally intermediate Between Those of The Parents and Showed Stronger intermediate C3―C4 Features As The Proportion of The Ma Genome increased. The P-Protein of Glycine Decarboxylase (Gdc) Was Confined Mainly To Bs Mitochondria in M. Arvensis, But Accumulated More in The Mesophyll (M) of Cabbage. in The Hybrids, The Accumulation of Gdc in Bs Cells increased With An increasing Ma:C Ratio. Hybrids Exhibited Gradients in Structural and Biochemical Features, Even in Reciprocal Crosses. The Co2 Compensation Point of Reciprocal Hybrids With High Ma:C Ratios Was Lower Than That of Cabbage But Higher Than That of M. Arvensis. Thus, The Structural and Biochemical Features in Hybrid Leaves Reduced Photorespiration. Moricandia Arvensis Had A Higher Photosynthetic Rate Than Cabbage, But The Photosynthetic Rates of Hybrids Were intermediate Between Those of The Parents Or Comparable To That of M. Arvensis. Our Results Demonstrate That The C3―C4 intermediate Characteristics Are inherited Based On The Ratio of The Parent Genomes, and That There Is No Evidence of Cytoplasmic inheritance in These Characteristics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号