首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   493篇
  免费   29篇
  国内免费   18篇
林业   22篇
农学   30篇
基础科学   9篇
  241篇
综合类   150篇
农作物   8篇
水产渔业   16篇
畜牧兽医   57篇
园艺   4篇
植物保护   3篇
  2024年   3篇
  2023年   10篇
  2022年   10篇
  2021年   20篇
  2020年   18篇
  2019年   17篇
  2018年   18篇
  2017年   22篇
  2016年   33篇
  2015年   23篇
  2014年   25篇
  2013年   30篇
  2012年   39篇
  2011年   21篇
  2010年   18篇
  2009年   26篇
  2008年   30篇
  2007年   29篇
  2006年   21篇
  2005年   18篇
  2004年   14篇
  2003年   10篇
  2002年   6篇
  2001年   5篇
  2000年   13篇
  1999年   6篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1995年   5篇
  1994年   4篇
  1993年   15篇
  1992年   5篇
  1991年   3篇
  1990年   7篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
排序方式: 共有540条查询结果,搜索用时 15 毫秒
11.
固定化微藻对养殖对虾细菌数量的影响   总被引:1,自引:2,他引:1  
以固定化技术为基础,人工制成微藻藻珠,引入波吉卵囊藻(Oocystisborgeisnow)和微绿球藻(Nannochloropsis oculata)于凡纳对虾(Litopenaeusvannamei)养殖环境中,采用直接计数法研究了养殖水体、对虾肌肉、对虾肝胰脏中异养菌及弧菌的数量变化。结果表明,引入藻珠能抑制异养菌和弧菌的生长,并能改善水质。试验末期,试验1、2、3组水样中弧菌数量分别降低了95%、95%、81.7%,异养菌数量降低了72.3%、77.1%、95.6%。可见固定化微藻在一定程度上能改善虾池细菌生态系,有助于预防对虾疾病。  相似文献   
12.
Reclaimed soils in mining area usually display low fertility and present Cd stress. The amendment of modified biochar effectively fixes Cd in soils, enhances soil fertility, and reduces Cd stress in soil microorganisms. However, the effect of thiourea-modified biochar (TBC) on microbial adaptability to Cd stress in mining reclamation soils is still unclear. The present work studied the Cd immobilization and microbial community changes in a mining reclamation soil displaying extreme Cd contamination under TBC amendment. The results indicated that the amendment of TBC significantly enhanced (P < 0.05) soil pH, the content of available phosphorus (AP), and the activities of urease and polyphenol oxidase by 1.3%, 463.4%, 54.4%, and 84.0%, respectively, compared to the control without amendment. The amount of toxicity characteristic leaching procedure-extracable Cd decreased (P < 0.05) by 68.0% in the TBC-amended soil compared with the unamended soil. The structure of soil microbiota was reorganized and the alpha diversity index was increased in the TBC treatment. The TBC amendment increased the relative abundances of Proteobacteria, Bacteroidota, and Zoopagomycota, which were strongly associated (P < 0.01) with higher soil pH and AP. Structural equation model results demonstrated that Cd immobilization was directly influenced by soil pH, AP, and urease, and indirectly affected by bacterial structure in the TBC treatment. The TBC amendment can effectively improve the structural composition of soil bacteria under Cd stress and enhance the pathways of decreasing soil Cd availability as well. The results might facilitate the development of in-situ remediation programs in Cd-contaminated soils in the future.  相似文献   
13.
In trace metal (TM)-contaminated agricultural soils,management of TM availability is important for safe crop production.In addition,maintenance or improvement of soil quality is vital for sustainable crop cultivation.Decreased TM phytoavailability and increased soil quality can be achieved by the application of various immobilizing agents to soil,which can supply both macronutrients and organic matter.This study investigated the long-term influences of four common immobilizing agents on soil biogeochemical properties and the phytoavailability of TMs in mixed metal-contaminated soil from a cultivated upland near an abandoned mining site.Lime (L),gypsum (G),fly ash (F),and animal manure-based compost (C) were applied to pots containing contaminated soil,either individually or in combination.After incubation for three years under sequential cultivation of two crops and fallow,soil biogeochemical properties were determined,and Brassica rapa plant bioassay was performed.The phytoavailability of all TMs (both cationic metals and anionic metalloids) remained significantly lower in soils treated with immobilizing agents even after three years,when compared with the no-agent control (CK) soil.In addition,the soil quality was significantly improved by treatment with immobilizing agents.For instance,the C and L+C treatments were the most effective in improving soil physical (bulk density,porosity,and water-resistant aggregate stability),chemical (pH,organic matter,total nitrogen,cation exchange capacity,and plant-available phosphorus,magnesium,and potassium),and biological (microbial biomass carbon and dehydrogenase activity) properties.The improvement of soil properties and lowering of TM bioavailability were also consistent with the most significant increase in B.rapa biomass production observed in the C treatment,followed by the L+C,G+F,L,G,F,and L+G treatments,as compared with that in CK.These results indicate that the function of the TM-immobilizing agent as a soil quality conditioner,in addition to its TM immobilizing effect,should be considered when selecting such agents for agricultural or ecological applications.  相似文献   
14.
刺激隐核虫抑动抗原生物学信息及抗原特性分析   总被引:2,自引:0,他引:2  
对刺激隐核虫抑动抗原基因进行生物学信息分析,利用抗原表位多肽制备了鼠源抗抑动抗原抗体,并研究其抗原特性.试验结果表明:利用表位串联多肽所制备的鼠源抗抑动抗原抗体包含有针对刺激隐核虫抑动抗原的特异性抗体,为刺激隐核虫单克隆抗体和疫苗的制备奠定了基础.  相似文献   
15.
Previous experiments have shown that, at harvest of winter wheat, recovery of fertilizer N applied in early spring [tillering, Zadok’s growth stage (GS) 25] is lower than that of N applied later in the growth period. This can be explained by losses and immobilization of N, which might be higher between GS 25 and stem elongation (GS 31). It was hypothesized that a higher crop density (i.e. more plants per unit area) results in an increased uptake of fertilizer N applied at GS 25, so that less fertilizer N is subject to losses and immobilization. Different crop densities of winter wheat at GS 25 were established by sowing densities of 100 seeds m–2 (Slow), 375 seeds m–2 (Scfp= common farming practice) and 650 seeds m–2 (Shigh) in autumn. The effect of sowing density on crop N uptake and apparent fertilizer N recovery (aFNrec = N in fertilized treatments ? N in unfertilized treatments) in crops and soil mineral N (Nmin), as well as on lost and immobilized N (i.e. non‐recovered N = N rate ? aFNrec), was investigated for two periods after N application at GS 25 [i.e. from GS 25 to 15 days later (GS 25 + 15d), and from GS 25 + 15d to GS 31] and in a third period between GS 31 and harvest (i.e. after second and third N applications). Fertilizer N rates varied at GS 25 (0, 43 and 103 kg N ha–1), GS 31 (0 and 30 kg N ha–1) and ear emergence (0, 30 and 60 kg ha–1). At GS 25 + 15d, non‐recovered N was highest (up to 33 kg N ha–1 and up to 74 kg N ha–1 at N rates of 43 and 103 kg N ha–1, respectively) due to low crop N uptake after the first N dressing. Non‐recovered N was not affected by sowing density. Re‐mineralization during later growth stages indicated that non‐recovered N had been immobilized. N uptake rates from the second and third N applications were lowest for Slow, so non‐recovered N at harvest was highest for Slow. Although non‐recovered N was similar for Scfp and Shigh, the highest grain yields were found at Scfp and N dressings of 43 + 30 + 60 kg N ha–1. This combination of sowing density and N rates was the closest to common farming practice. Grain yields were lower for Shigh than for Scfp, presumably due to high competition between plants for nutrients and water. In conclusion, reducing or increasing sowing density compared to Scfp did not reduce immobilization (and losses) of fertilizer N and did not result in increased fertilizer N use efficiency or grain yields.  相似文献   
16.
论述了细胞固定化技术以及共固定化技术的研究及其发展,在酸马奶酒及其菌种特性研究的基础上,提出马奶酒菌种固定化研究的意义及其展望。  相似文献   
17.
果胶酶在果品加工中的应用及其固定化研究   总被引:2,自引:0,他引:2  
介绍了果胶酶在果品加工中的应用,并对果胶酶的固定化研究现状及发展前景作了阐述。  相似文献   
18.
A better understanding of the fate of fertilizer nitrogen (N) is critical to design appropriate N management strategies in plastic-mulched croplands. We evaluated the effects of plastic mulch on urea-N recovery by crops and loss from soil in furrow-ridge plots, with and without maize (Zea mays L.) cropping, in a semi-arid rain-fed site in China. We applied the same rate of urea-N (281 kg ha−1) to all treatments during the preparation of the furrow-ridges in 2011 and 2012 but 15N-labeled the urea in 2011 only. We used transparent film to cover all soil surfaces in the mulched treatments and seeded maize in furrows in treatments with crop. In 2011, plastic mulch increased the total N uptake in the aboveground biomass of maize by 53%, whereas it decreased the in-season labeled-N uptake by 19%, compared to non-mulched treatment. At harvest in 2011, in mulched treatments the total labeled-N remaining in the 0−170 cm soil layer was 25% greater whereas unaccounted labeled-N was 69% less, than in non-mulched treatments, regardless of whether maize was cropped. In 2012 the effect of mulch on total maize N uptake was comparable to that in 2011, but the residual soil labeled-N uptake by maize was 63% higher in mulched compared to non-mulched treatment. At harvest in 2012, plastic mulch increased total labeled-N remaining in the 0−170 cm depth in cropped soils and unaccounted labeled-N in non-cropped soils, compared with no mulch. Our results indicate that plastic mulch profoundly changes the fate of urea-N in maize production in cold and dry croplands.  相似文献   
19.
土壤氮矿化-固持周转(MIT)研究进展   总被引:4,自引:0,他引:4  
鲁彩艳  陈欣 《土壤通报》2003,34(5):473-477
土壤氮矿化-固持周转(MIT)过程与土壤供氮力及氮素损失间存在密切关系。本文概述了近年来MIT过程的研究方法及其相应的模型;对土壤温度、土壤水分、土壤理化性质、植物生长状况以及有机、无机肥的施用等影响MIT过程的主要因素进行了较详尽地阐述,并展望了今后主要的研究方向。  相似文献   
20.
Species N use traits was evaluated as a mechanism whereby Bromus inermis (Bromus), an established invasive, might alter soil N supply in a Northern mixed-grass prairie. We compared soils under stands of Bromus with those from three representative native grasses of different litter C/N: Andropogon gerardii (Andropogon), Nassella viridula (Nassella) and Pascopyrum smithii (Pascopyrum); in ascending order of litter quality. Net mineralization (per g soil N) measured in year-long laboratory incubations showed no differences in comparisons of Bromus with two of the three native grasses: Andropogon and Nassella. Higher mineralization in Pascopyrum stands relative to Bromus was consistent with its higher litter quality. However, an unusually high occurrence of an N-fixing legume in Pascopyrum stands, potentially favoring high mineralization rates, confounded any conclusions regarding the effects of plant N use on N mineralization. Instead of an initial flush of net mineralization, as would be expected in laboratory incubation, we observed an initial lag phase. This lag in net N mineralization coincided with high microbial activity (respiration) that suggests strong N limitation of the microbial biomass. Further support for the importance of immobilization initially came from modeling mineralization dynamics, which was explained better when we accounted for microbial growth in our model. The absence of strong differences in net mineralization beneath these grasses suggests that differences in plant N use alone were unlikely to influence soil N mineralization through substrate quality, particularly under strong N control of the microbial biomass.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号