首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   658篇
  免费   13篇
  国内免费   34篇
林业   33篇
农学   17篇
基础科学   16篇
  128篇
综合类   431篇
农作物   20篇
畜牧兽医   40篇
园艺   3篇
植物保护   17篇
  2024年   2篇
  2023年   3篇
  2022年   10篇
  2021年   18篇
  2020年   19篇
  2019年   25篇
  2018年   11篇
  2017年   31篇
  2016年   30篇
  2015年   39篇
  2014年   39篇
  2013年   31篇
  2012年   72篇
  2011年   97篇
  2010年   95篇
  2009年   58篇
  2008年   31篇
  2007年   14篇
  2006年   16篇
  2005年   7篇
  2004年   9篇
  2003年   3篇
  2002年   5篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   4篇
  1997年   4篇
  1996年   3篇
  1995年   5篇
  1993年   7篇
  1992年   5篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
排序方式: 共有705条查询结果,搜索用时 562 毫秒
71.
The amount of soil water at the beginning of the growing season has a large impact on crop yields in rainfed agriculture, especially in semi-arid regions and in years with below-average rainfall in more humid climates. Robust algorithms are needed to estimate soil water storage before planting to aid crop management decisions. The main objectives of this paper are to investigate soil water recharge during the non-growing season (October 20 to May 1) in a semi-arid, temperate ecosystem in south-central Nebraska (USA) and to evaluate empirical models to estimate soil water content at the beginning of the summer-crop growing season. A database of soil water content measurements collected over 5 years at nine locations in south-central Nebraska was used to estimate available water-holding limits in the soil profile and to determine the change in available soil water during the non-growing season. Regression analysis was performed to analyze the relationship among soil water recharge, residual soil water (i.e., soil water content at the end of the previous growing season), total precipitation, and available water-holding capacity (AWHC) in the root zone to 1.5 m. Precipitation storage efficiency (PSE) was calculated as the quotient of soil water recharge and total non-growing season precipitation. Predictive models to estimate soil water content at the beginning of summer-crop growing season were derived from these analyses. A large portion of the variation in soil water recharge was explained by residual soil water and precipitation. PSE averaged 28% across site-years; low PSE values were associated with high residual soil water and/or low AWHC. Two predictive models (linear and linear-plateau) that used residual soil water, total precipitation, and AWHC as independent variables explained 75-80% of the variation in the measured soil water content at the beginning of the summer-crop growing season. These empirical models represent a new tool to estimate soil water content by planting date of summer crops. Site-management conditions such as residue amount and its architecture, tillage system, soil texture, and terrain slope are not currently accounted for in these models and would likely improve predictive capacity.  相似文献   
72.
中国夏玉米和冬小麦近年生育期变化及其与气候的关系   总被引:4,自引:0,他引:4  
作物物候期受气候条件和人为耕作的共同影响,而水热气候条件又直接影响着人为耕作时间。全球变暖背景下温度增加的趋势在近年来出现了停滞现象,针对这一新的气候变化特征,本研究选取作物物候观测和气象观测的站点数据,利用经典的统计学方法分析2000—2013年中国夏玉米和冬小麦主要物候期的变化趋势和空间分布,及作物生育期与对应水热条件的相关关系。研究发现:夏玉米和冬小麦各主要物候期均呈现一定程度的延后,其中64%的站点显示夏玉米成熟期延后,冬小麦成熟期延后的站点数比例达78%。研究期间,夏玉米和冬小麦的生育期历时对温度和降水变化均比较敏感,88%和64%的站点分别显示出夏玉米和冬小麦的生育期历时与平均温度之间呈负相关关系,而71%和77%的站点显示夏玉米和冬小麦生育期历时与年均降水量呈正相关关系。本研究时段内的气温变化也不同于一般性认为的单调升温,夏玉米生育期对应的平均温度呈增加和降低趋势的站点数基本相同,但显示降水量增加的站点较多,达到总站点数的68%;而冬小麦整个生育期显示冷干化趋势的站点居多,显示温度降低和降水量下降的站点数均占总站点数的60%以上。此外,本研究还用轮作站点探讨说明了可以利用年值气候数据替代生育期气候数据分析夏玉米和冬小麦轮作的物候和生育期特征。本研究通过站点数据证实了作物生长发育过程对气候变化的敏感性,新的气候条件下我国夏玉米和冬小麦的物候也对应产生了新的特征。  相似文献   
73.
降水和氮沉降对草地生态系统碳循环影响研究进展   总被引:1,自引:0,他引:1  
随着全球变化的不断加剧,陆地生态系统碳循环备受关注,近年来预测未来降水格局变化和氮沉降增加对草地生态系统碳循环影响的研究不断深入。本文综述了全球背景下降水格局变化和氮沉降增加对草地生态系统碳循环的影响及其内在机理。降水量、强度、时间分布和频度以及氮沉降量、频度和形态的变化,通过改变土壤含水量、土壤温度、土壤养分及微生物活性影响生态系统的物种组成和结构,最终影响生态系统水平的碳循环。降水格局变化和氮沉降增加对生态系统水平碳循环是否存在交互作用没有统一的结论,因此在将来的研究中应采用多因子的实验,才能够更好的研究未来全球变化下生态系统碳循环的响应机理。  相似文献   
74.
Isl>2.5,1953~2008年)或连续2~3年干旱指数绝对值接近1.5σ时,水分条件将会对MXD产生影响.这一气候响应特征与研究区半干旱气候有关,在干早年份,水分匮缺会限制晚材细胞壁的加厚,从而影响MXD.因此,与相对湿润地区相比,半干旱地区树轮MXD对气温响应的同时也会受到极端降水状况的影响,作为气温代用指标需谨慎而有限度的使用.  相似文献   
75.
为研究南四湖流域的极端降水特征,本研究利用1981—2014年南四湖流域9个气象站的逐日降水资料,研究分析了该流域降水阈值、极端降水日数等变化特征.结果表明:(1)对于第90、95和99百分位的极端降水事件,平均降水阈值分别为24.7、40.0、80.2 mm;(2)南四湖地区北部降水阈值较南部偏大,东部较西部偏大,极端强降水阈值的空间分布与年降水量的分布相似;(3)南四湖地区年平均极端降水量东北部以及北部较强,南部和西南部较小,这种分布和南四湖流域的降水气候平均态分布较为类似,反映了极端降水对于降水的贡献非常大;(4)南四湖地区极端降水日数平均为每年3.08~3.56天,表现出极端降水阀值大的站点,其极端降水日数较少,其相关系数达-0.893;(5)南四湖地区极端降水量对总降水量的贡献为34.2%~37.7%,且多年平均年极端降水强度分布与极端降水阈值分布相似,说明阈值大的地方,其降水强度也大,形成灾害的风险也大;(6)南四湖地区极端降水多年平均日数为23.5天,且以4.5 d/10 a的速率上升;(7)南四湖地区20世纪80年代中后期年总极端降水日数发生突变,且存在2年和16年左右的振荡周期.  相似文献   
76.
曹言  王杰  张鹏  张雷 《安徽农业科学》2016,44(24):195-200
根据2008~2012年TRMM3B43降水数据,通过计算TRMM降水距平和累积降水距平,分析云南省不同时间尺度下干旱的时空分布特征。结果表明,云南省干旱受降水影响显著,干旱主要发生在1、2、11和12月,其中特旱主要出现在11和12月,重旱主要出现在11、2、12和1月,中旱主要发生在12和2月,轻旱主要发生在2月,而在干旱频发月份中,干旱主要出现在滇中和滇西南地区;从云南省干旱累计来看,干旱主要出现在10月~次年1月,且主要出现在滇中地区;TRMM数据可用于中长期的旱情监测与评估,相对站点实测数据更适合于大尺度空间上宏观性的干旱监测。  相似文献   
77.
利用1961—2015年濉溪县日照、气温、降水等气象资料,采用统计分析方法对濉溪县气候变化进行分析。结果表明,近55年濉溪县全年和冬夏季日照时数明显减少,4月增加;全年和1—4、10月平均气温显著升高,年均最高气温无明显变化,全年和1—6、9—10、12月最低气温显著上升,全年和1—3、5—8、12月温差显著减少;9月降水量趋于减少,全年和春季雨日显著减少;全年和冬季、春季、夏季蒸发量显著减少;相对湿度、湿润指数略有降低,9月湿润指数趋于减少。可见,近55年濉溪县气候呈现“暖干化”趋势。  相似文献   
78.
利用中国地面气候资料日值数据中的385个台站1965 ~ 2014年气温和降水资料,采用统计分析和OPTICS等方法,对近50a我国日最高、最低、平均气温和降水量的整体变化趋势以及不同时段的变化趋势进行了分析.结果表明,近50 a来我国整体升温,华南以及华中地区南部、西南地区北部升温较弱;东北,华北地区北部,西北地区升温较强,且最低气温升高程度普遍高于平均气温和最高气温.全国范围内降水变化区域差异较大,华东地区降水明显增多,西南、华北地区降水减少;东北、华中地区降水变化区域性差异较大,西北地区降水变化程度不大,以增加为主.近50 a来东北、华北地区在1985 ~ 1994年增温最快,华南、华中、西南,西北地区西南部在1995 ~2004年增温最快;而2005 ~ 2014年我国大部分台站呈现变冷趋势.降水方面,华东地区降水明显增多,西南、华北地区降水减少,降水明显变化主要发生在4~10月,对西南地区降水减少贡献最大的是6、8月;华北降水减少主要发生在7~8月;华东地区降水增加月份是1、3、7和8月,减少程度较大的月份是4、5和9月.  相似文献   
79.
利用宝丰站1957~2014年的温度、降水、日照资料,采用线性回归、距平、Mann-Kendall检验等方法分析了近58 a来宝丰县气候变化特征。结果表明,近58 a宝丰县年平均气温呈上升趋势,春季、秋季、冬季平均温度也均呈上升趋势,夏季平均气温呈下降趋势;年降水呈减少趋势,冬季降水为增加趋势,其他3个季节为减少趋势;年和四季日照时数均为减少趋势,季日照时数减少趋势从大到小依次为夏季、冬季、秋季、春季。  相似文献   
80.
云凝结核浓度对一次梅雨锋降水影响的数值模拟   总被引:1,自引:0,他引:1  
利用WRF模式(V3.6),采用WDM6双参数微物理方案对2012年7月2~3日江淮地区的一次持续性梅雨锋暴雨过程进行数值模拟,对不同初始云凝结核(CCN)浓度背景下的地面累积降水量和云中微物理过程进行对比分析。结果表明,初始CCN浓度在一定程度上影响了降水的微物理过程,进而影响降水量;当背景CCN浓度增加时,在降水前期引起云滴半径减小,云滴转化效率变低,抑制暖云降水,后期冷云过程得到加强,大量冰相粒子生成,最终导致降水增加。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号