首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   840篇
  免费   40篇
  国内免费   46篇
林业   53篇
农学   42篇
基础科学   11篇
  278篇
综合类   317篇
农作物   75篇
水产渔业   16篇
畜牧兽医   90篇
园艺   41篇
植物保护   3篇
  2024年   6篇
  2023年   7篇
  2022年   5篇
  2021年   14篇
  2020年   15篇
  2019年   12篇
  2018年   8篇
  2017年   30篇
  2016年   29篇
  2015年   27篇
  2014年   38篇
  2013年   34篇
  2012年   95篇
  2011年   66篇
  2010年   64篇
  2009年   60篇
  2008年   36篇
  2007年   58篇
  2006年   50篇
  2005年   31篇
  2004年   35篇
  2003年   30篇
  2002年   15篇
  2001年   14篇
  2000年   21篇
  1999年   16篇
  1998年   11篇
  1997年   11篇
  1996年   15篇
  1995年   22篇
  1994年   13篇
  1993年   8篇
  1992年   7篇
  1991年   3篇
  1990年   9篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   2篇
排序方式: 共有926条查询结果,搜索用时 15 毫秒
41.
庄翔宇  杨金玲  张甘霖  王艳玲 《土壤》2016,48(2):374-380
矿物风化过程中盐基离子释放遵从一定的化学计量关系,这种化学计量关系一般只能通过模拟实验来获取。本研究采用pH 7.0的EDTA-乙酸铵溶液将土壤中的交换性盐基离子完全洗脱出来,然后用Batch方法模拟不同pH溶液淋溶洗脱盐基和未洗脱盐基土壤,旨在消除土壤中交换性盐基离子的影响后更为准确地判断土壤矿物风化的盐基离子释放特征。结果表明:未洗脱盐基土壤的淋出液pH由3.73±0.14逐渐上升到4.23±0.06,主要原因是淋溶液中有高浓度的NH_4~+;洗脱盐基土壤矿物风化后淋出液pH从7.39±0.02逐渐下降到5.39±0.17,主要是由于土壤中可风化矿物减少。土壤交换性盐基离子会改变盐基离子释放特征、释放总量:未洗脱盐基土壤经酸雨淋溶后,各盐基离子释放均呈现急速下降后逐渐平缓的趋势,洗脱盐基土壤矿物风化后,K~+及盐基离子释放总量呈波动上升趋势,且盐基离子释放总量比未洗脱盐基土壤低。土壤交换性盐基离子的存在还会改变淋出液中的盐基离子化学计量关系:未洗脱盐基土壤的K~+︰Ca~(2+)︰Mg~(2+)︰Na+化学计量关系为11︰13︰4︰1(当量比),而洗脱盐基土壤为7︰2︰2︰1。K~+是盐基离子中风化释放量最多的,大部分K~+来自于土壤中云母的风化。因此,只有利用洗脱盐基土壤的盐基离子释放量才能准确计算矿物风化速率并获得准确的化学计量关系。土壤矿物风化作用随着淋溶液酸度增大而增强,但模拟一年降雨量的情况下,p H 3.5、4.5和5.5三种不同p H溶液对矿物风化后盐基离子的释放在实验期间没有显著性影响,较长时间后的差异性有待观察。本研究表明,可以通过预洗脱盐基土壤然后模拟酸雨淋溶的方法,观察矿物风化特征,特别是盐基离子释放的化学计量特征。  相似文献   
42.
Effect of pH on nitrogen mineralization in crop-residue-treated soils   总被引:1,自引:0,他引:1  
Summary This study compares N mineralization in soils treated with crop residues [corn (Zea mays L.), soybean (Glycine max (L.) Merr.), sorghum (Sorghum vulgare Pers.)] or alfalfa (Medicago sativa L.) at three adjusted soil pH values (4, 6, and 8); pH was adjusted with dilute H2SO4 or KOH. A sample of soil (20 g) was treated with 0.448 g plant material (equivalent to 50t ha–1), mixed with 20 g silica sand adjusted to the pH of the soil, and packed in a leaching tube. The soil-sand mixture was leached with 100 ml 5 mM CaCl2 adjusted to the same pH as that of the treated soil to remove the initial mineral N, and incubated at 30°C. The leaching procedure was repeated every 2 weeks for 20 weeks. Results from three soils showed that N mineralization increased as the soil pH increased. In one soil (Lester soil), significant amounts of NH 4 + -N accumulated at pH 4 during the first 12 weeks. Treatment with corn and soybean residues resulted in a marked reduction in N mineralization, especially at pH 4. The percentage of organic N mineralized from sorghum residue and alfalfa added to soils increased as the soil pH increased; the values ranged from 7.7% to 37.0% for sorghum and from 17.2% to 30.1% for alfalfa.  相似文献   
43.
采用稀酸对竹粉进行预处理,结果表明竹粉酶解的最佳优化条件为:温度125℃,固液比最佳比值为1:10,硫酸浓度为4%,预处理时间为2 h,经过酶处理以后,其竹粉水解率达57.99%,半纤维素水解达70.18%.  相似文献   
44.
Kim JE  Kim HJ  Pandit S  Chang KW  Jeon JG 《Fitoterapia》2011,82(3):352-356
Rheum undulatum root has been used traditionally in Korea for the treatment of dental diseases. The purpose of this study was to separate a fraction from R. undulatum showing anti-acid production activity against Streptococcus mutans biofilms and identify the main components in that fraction. Methanol extract of R. undulatum root and its fractions were prepared. To select a fraction exhibiting anti-acid production activity, suspension glycolytic pH-drop assay was performed. Among the fractions tested, dichloromethane fraction exhibited the strongest activity in a dose-dependent manner. To examine the effect of the selected fraction on the anti-acid production of S. mutans biofilms, 74 h old S. mutans biofilms were used. The selected fraction reduced the initial rate of acid production of S. mutans biofilms at sub-minimum inhibitory concentration (MIC) levels. HPLC qualitative analysis of the selected fraction indicated that the presence of anthraquinone derivatives, such as aloe-emodin, emodin, chrysophanol and physcion, as main components.  相似文献   
45.
The critical load concept is now accepted throughout Europe as a means of estimating the sensitivity of key components of aquatic and terrestrial ecosystems to atmospheric inputs of sulphur (S) and nitrogen (N). Current UK freshwater maps, based on steady-state water chemistry, are derived using a critical acid neutralising capacity (ANCLIM) value of zero eql–1, which is based on the probability of occurrence of salmonid fish in lakes. In practice most acidification damage to salmonid fish occurs in nursery streams at the emergence and first feeding stages. In general a clear relationship exists between salmon (Salmo salar L.) and trout (S. trutta L.) densities in Scottish streams and ANC values. However, differences between sites depend on which ANC value is used (eg maximum, minimum or mean). By contrast, when the exceedance of critical loads is compared with salmonid densities the relationship is less clear because many exceeded sites have good salmonid densities. Many of these latter sites are found in north-west Scotland where sea-salt inputs are high and ANC is usually greater than zero eql–1, although diatom-based studies indicated slight acidification of these waters, with a point of change in diatom flora close to ANC=20 eql–1. These false exceedances are probably due to preferential adsorption of acidic SO4 deposition which results in an overestimate of exceedance values. All sites with a mean ANC 0 are fishless but some sites with negative minimum ANC values had normal salmonid densities. Consequently a mean ANCLIM value of zero in the critical load equations for UK freshwaters appears to be too low to protect salmonid stocks. Values between 20–50 eql–1 represent a more realistic range if prevention of long term damage to salmonid stocks is to be achieved.  相似文献   
46.
温度对酸性草酸-草酸铵溶液浸提土壤无定形铁的影响   总被引:1,自引:0,他引:1  
潘赟  胡雪峰  叶荣  金莺 《土壤通报》2006,37(6):1188-1190
以下蜀黄土为试材,研究温度对酸性草酸-草酸铵缓冲溶液浸提土壤无定形铁的影响。结果表明:随着浸提温度的升高,铁的浸提量明显增加。30℃浸提出的铁约为20℃的1.57倍;而50℃浸提出的铁约为20℃的4.43倍。随温度的升高,浸提后土壤残渣的磁化率迅速降低。20℃浸提后残渣的磁化率值比原样略有减少;30℃浸提后残渣的磁化率约为原样的93.6%;50℃浸提后残渣的磁化率只有原样的65.3%。这说明随着温度的升高,以磁性矿物为代表的结晶态铁也被溶解,浸提出的铁其实已不仅是无定形铁。因此,用酸性草酸铵浸提无定形铁时,严格控制20℃的反应温度十分关键。  相似文献   
47.
The effects of conventional and biological farming systems on soil P dynamics were studied by measuring some microbiological parameters after 13 years of different cropping systems. The treatments included control, biodynamic, bio-organic, and conventional plots and a mineral fertilizer treatment. The farming systems differed mainly in the form and quantity of nutrients applied and in the plant protection strategies. The results of a sequential fractionation procedure showed that irrespective of the form of P applied, neither 0.5 M NaHCO inf3 sup- nor 0.1 M NaOH-extractable organic P, but only the inorganic fractions, were affected. The residual organic P, not extracted by NaHCO3 or NaOH was increased in the biodynamic and bio-organic plots. The soil microbial biomass (ATP content) and the activity of acid phosphatase were also higher in both biologically managed systems. These results were attributed to the higher quantity of organic C and organic P applied in these systems, but also to the absence of or severe reduction in chemical plant protection. The relationship between acid soil phosphatase and residual organic P was interpreted as an indication that this fraction might be involved in short-term transformations. The measurement of the intensity, quantity, and capacity factors of available soil P using the 32P isotopic exchange kinetic method showed that P could not be the factor limiting crop yield in the biological farming systems. The kinetic parameters describing the ability of P ions to leave the soil solid phase, deduced from isotopic exchange, were significantly higher for the biodynamic treatment than for all other treatments. This result, showing a modification of chemical bonds between P ions and the soil matrix, was explained by the higher Ca and organic matter contents in this system.  相似文献   
48.
In mineral soil, organic matter (OM) accumulates mainly on and around surfaces of silt- and clay-size particles. When fractionated according to particle density, C and N concentration (per g fraction) and C/N of these soil organo-mineral particles decrease with increasing particle density across soils of widely divergent texture, mineralogy, location, and management. The variation in particle density is explained potentially by two factors: (1) a decrease in the mass ratio of organic to mineral phase of these particles, and (2) variations in density of the mineral phase. The first explanation implies that the thickness of the organic accumulations decreases with increasing particle density. The decrease in C/N can be explained at least partially by especially stable sorption of nitrogenous N-containing compounds (amine, amide, and pyrrole) directly to mineral surfaces, a phenomenon well documented both empirically and theoretically. These peptidic compounds, along with ligand-exchanged carboxylic compounds, could then form a stable inner organic layer onto which other organics could sorb more readily than onto the unconditioned mineral surfaces (“onion” layering model).To explore mechanisms underlying this trend in C concentration and C/N with particle density, we sequentially density fractionated an Oregon andic soil at 1.65, 1.85, 2.00, 2.28, and 2.55 g cm−3 and analyzed the six fractions for measures of organic matter and mineral phase properties.All measures of OM composition showed either: (1) a monotonic change with density, or (2) a monotonic change across the lightest fractions, then little change over the heaviest fractions. Total C, N, and lignin phenol concentration all decreased monotonically with increasing density, and 14C mean residence time (MRT) increased with particle density from ca. 150 years to >980 years in the four organo-mineral fractions. In contrast, C/N, 13C and 15N concentration all showed the second pattern. All these data are consistent with a general pattern of an increase in extent of microbial processing with increasing organo-mineral particle density, and also with an “onion” layering model.X-ray diffraction before and after separation of magnetic materials showed that the sequential density fractionation (SDF) isolated pools of differing mineralogy, with layer-silicate clays dominating in two of the intermediate fractions and primary minerals in the heaviest two fractions. There was no indication that these differences in mineralogy controlled the differences in density of the organo-mineral particles in this soil. Thus, our data are consistent with the hypothesis that variation in particle density reflects variation in thickness of the organic accumulations and with an “onion” layering model for organic matter accumulation on mineral surfaces. However, the mineralogy differences among fractions made it difficult to test either the layer-thickness or “onion” layering models with this soil. Although SDF isolated pools of distinct mineralogy and organic-matter composition, more work will be needed to understand mechanisms relating the two factors.  相似文献   
49.
酸雨伤害植物的监测技术包括对植物叶片表观伤害监测与生理伤害监测,后者选择的参数主要有植物光合速率、气孔导度、细胞质膜透性、叶绿素含量消长、细胞pH变化、活性氧防御系统的应激反应等。本文在介绍测定方法同时,比较分析了各种方法的优点与不足,探讨了酸雨监测技术在农业环境监测、环境评价、酸沉降区域农业区划与环境保护中的作用,指出今后研究应重视完善监测体系和拓展监测对象。  相似文献   
50.
研究了稻秆、碳酸钙和二氧化锰改良剂对淹水的酸性硫酸盐土的电化学、化学动力学、水稻生长及产量的影响. 施用稻秆(干土重的0.25%)显著影响土壤的还原作用.高浓度的亚铁使水稻前期生长受阻;但亚铁的浓度随后逐渐降低,水稻生长繁茂,谷粒和茎秆产量反较高,植株的含钾量也增高. 加入酸酸钙(相当于干土重的0.25%)明显提高了土壤的pH值,降低土壤的Eh和EC值,并显著降低了水溶性亚铁、亚锰和铝的浓度.碳酸钙或碳酸钙加二氧化锰的处理,都能降低土壤溶液中亚铁的浓度,显著增加稻谷和稻杆的产量,此外,这两种处理都会降低生长前期植株中锌的含量. 加入二氧化锰(干土重的0.005%),使土壤溶液中的亚锰量增多,植株的铁锰比率降低,水稻产量比对照显著增加. 研究结果表明,稻杆是一种改良酸性硫酸盐土较经济的改良剂,其价值值得进一步研究.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号