首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   0篇
  国内免费   2篇
农学   16篇
基础科学   3篇
  18篇
综合类   4篇
农作物   8篇
畜牧兽医   1篇
植物保护   1篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2013年   6篇
  2012年   3篇
  2011年   5篇
  2010年   5篇
  2009年   5篇
  2008年   1篇
  2007年   4篇
  2006年   5篇
  2004年   1篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1988年   1篇
排序方式: 共有51条查询结果,搜索用时 28 毫秒
11.
The Fusarium wilt in cucumbers, caused by the pathogenic fungus Fusarium oxysporum f. sp. cucumerinum, is a serious and destructive disease worldwide. An effort was made to explore the role of Trichoderma harzianum T-E5 in reducing the incidence of Fusarium wilt. Three treatments (Control, T1, and T2) were established in the greenhouse experiment. The effects of T-E5 on the composition of root exudates and fungal community in the cucumber rhizosphere were measured. Compared with the control, the application of a bio-organic fertilizer (BIO) enriched with T-E5 was found to decrease the incidence of Fusarium wilt notably and promote the growth of cucumber plants. Based on real-time PCR, the population of F. oxysporum in the control without T-E5 increased from 103 to 104 ITS copies g−1 soil, whereas the population decreased from 103 to 102 ITS copies g−1 soil in the T1 and T2 treatment groups when T-E5 was included. Significant difference in fungal community was also found among the treatment groups. HPLC analysis showed that the detected levels of phenolic compounds in control were significantly higher than the levels in the samples subjected to T1 and T2 treatments. The root exudates from the control group significantly increased the numbers of germinating spores of the pathogen compared with those from the samples treated with T1 and T2. In conclusion, the modification of root exudates and the fungal community by the application of BIO might account for the effective suppression of Fusarium wilt disease in cucumbers.  相似文献   
12.
The extensigraph is particularly useful in characterizing dough viscoelastic properties; however, testing throughput for standard method is low due to the prerequisite for farinograph water absorption, long dough resting and milling to prepare large amounts of flour. Therefore, a rapid extensigraph method was developed that reduced sample size (165 g wheat) for milling and more than tripled throughput. Wheat is milled in Quadrumat Junior mill with a modified sieving system. The resulting flour (100 g) was mixed with a pin mixer at constant water absorption to allow the evaluation of wheat genotypes at the absorption level they are expected to perform. Dough was subsequently stretched by an extensigraph after 15 min of floor time and 30 min resting. Strong correlations for extensigram Rmax (r > 0.93), extensibility (r > 0.64) and area (r > 0.88) were found for the proposed method compared to the standard method. Mixing parameters (time and energy) obtained during dough preparation provided further information about dough strength and mixing requirement. By significantly reducing sample size requirement and increasing testing throughput, this rapid extensigraph method can be widely adopted in milling and baking industry and meets the need for a fast evaluation of dough strength in breeding trials.  相似文献   
13.
Seed-applied fungicides are commonly used to prevent or suppress fungal disease organisms in pulse crop production. However, non-target beneficial fungi, such as arbuscular mycorrhizal fungi (AMF), also may be affected. Seed-applied fungicides Agrox® FL (active ingredient: captan), Allegiance™ FL (metalaxyl), Apron Maxx® RTA® (fludioxonil and metalaxyl), Thiram 75WP (thiram), Vitaflo® 280 (carbathiin and thiram), Crown® (carbathiin and thiabendazole), and Trilex® AL (trifloxystrobin and metalaxyl) were assessed in a greenhouse study for their effects on colonization and development of AMF in pea and chickpea, and the consequent impact on plant growth. In the absence of disease pressure, systemic fungicides Allegiance™ FL, Apron Maxx® RTA®, Vitaflo® 280, Crown® and Trilex® AL restricted mycorrhizal colonization, host growth and P uptake to different levels. In contrast, contact fungicides Agrox® FL and Thiram 75WP had minimal effects on mycorrhizal colonization, host growth and P uptake. Although consequent sporulation and glomalin-related protein production were not significantly affected by fungicides at an early host growth stage, the compositional structure of the AMF community in host roots was significantly altered in response to Agrox® FL, Allegiance™ FL, Apron Maxx® RTA®, and Trilex® AL as revealed by pyrosequencing-based analysis of fungal 18S rRNA. These results indicate that the suppressive effects of seed-applied fungicides on AMF development depend on specific fungicide-AMF interactions.  相似文献   
14.
Cereal–legume intercropping can promote plant growth (i.e. facilitation) through an increase in the amount of phosphorus (P) taken up, especially in low P soils. The aim of this study was to test the hypothesis that these positive interactions are supported by rhizosphere processes that increase P availability, such as root-induced pH changes. In neutral and alkaline soils legumes are assumed to increase inorganic P availability by rhizosphere acidification due to N2 fixation which benefit to the intercropped cereal. Growth, P uptake, changes in inorganic P availability and pH in the rhizosphere of intercropped species were thus investigated in a greenhouse pot experiment with durum wheat and chickpea either grown alone or intercropped. We used a neutral soil from a P fertilizer long-term field trial exhibiting either low (−P) or high (+P) P availability. Phosphorus availability was increased in the rhizosphere of both species, especially when intercropped in −P. Such increase was associated with alkalization. Rhizosphere pH changes could not fully explain the observed changes of P availability though. Low rates of N2 fixation may explain why no rhizosphere acidification was observed. Increases in P availability did not lead to enhanced P uptake but growth promotion was observed for durum wheat intercropped with chickpea in −P soil. Our hypothesis of an increase in inorganic P availability in intercropping as a consequence of root-induced acidification by the legume was not validated, and we suggested that root-induced alkalization was involved instead, as well as other root-induced processes. Thus, the cereal through rhizosphere alkalization may also enhance P uptake and growth of the intercropped legume. Facilitation can thus occur in both ways.  相似文献   
15.
In areas where two crops are grown per year or three crops every 2 years, the status of residual soil nutrients after the harvest of the first crop is critical to the crop to be grown immediately after, while the postharvest soil nutrient status can be influenced by irrigation applied to the test crop. This study determined the effect of various soil water treatments applied to the test crop on the status of postharvest residual soil nutrient pools in an arid environment. Spring wheat (Triticum aestivum L.) was grown as test crop under conditions of full- (as control), high-, moderate-, and low-water conditions during jointing, booting-heading, and grain filling stages, in 2003 and 2004. Compared to the control, grain yield and water use efficiency (WUE) were significantly increased by subjecting the wheat crop to moderate-water conditions during various growth stages, and low-water conditions at jointing stage in both years. Soil C at harvest decreased linearly with increased grain yield of the test crop. Moderate- to high-water conditions during jointing stage resulted in 12-24% greater soil C in the top 40 cm depth in 2003, with a marginal difference in 2004. Water treatments impacted the status of residual soil nutrients in 2003; soil total N and available soil P in the top 40 cm depth were significantly higher in low- to moderate-water treatments compared to the control, while in 2004 significantly higher total N and P, available N, P and K were found only in the top 20 cm depth. Increased yield of wheat test crop with moderate-water resulted in increased postharvest residual soil nutrients, whereas the ratios of C/N, C/P, and C/K were largely influenced by years and were less related to water treatments. We conclude that the determination of postharvest soil C and nutrient elements may provide useful information in monitoring potential changes of soil nutrient status over time in the intensified cropping systems, and that the recommendation of fertilization for the crop to be grown immediately following the first crop can be established by simply analyzing the productivity of the first crop without intensive measurements of soil nutrients.  相似文献   
16.
Carbon sequestration, recently advocated to mitigate climate change, needs a thorough knowledge of the dynamics of soil organic carbon (SOC), whose study requires long-term experiments. A field trial started in 1967 is still in progress in the Southeast Po valley (Italy). It compares a 9-year rotation (corn–wheat–corn–wheat–corn–wheat–alfalfa–alfalfa–alfalfa), two 2-year successions (corn–wheat and sugarbeet–wheat), continuous corn and continuous wheat. During the first 18 years (up to 1984) wheat crops were always followed by catch crops of silage corn. Within each rotation, three rates of cattle manure have been factorially combined with three mineral NP rates. In 1984 the highest manure application was stopped. Wheat straw and corn stalks have always been removed from the field. Since 1972 up to now every year we have determined the organic C and total N contents in soil samples collected from 0.40-m depth. During the first 18 years (in the presence of the catch crop) SOC exponentially declined, probably as a consequence of the intensification of tillage depth and crop succession with respect to the previous conventional agriculture. The intensification regarded ploughing, which became deeper, the number of cropped species that in most treatments was reduced, and mineral N application, which, on average, increased. The drop was faster in the sugarbeet–wheat succession than in the 9-yr rotation and continuous wheat. After 1985, without the catch crop, SOC linearly increased, faster in the 9-yr rotation and continuous wheat than in sugarbeet–wheat. The results can be ascribed to the amount and C/N ratio of debris remaining in the field after each crop, even after having taken away wheat straw and corn stalks. The debris consisted of sugarbeet tops, with a low C/N ratio, and of roots and basal culms of the two cereal crops with higher C/N ratio. Mineral fertilizers significantly increased SOC, probably for the greater amount of cereal roots and sugarbeet tops in more fertilized plots. The influence of manure was less intense, but its benefits lasted longer than 18 years after its interruption. Soil N content was more related to accumulated organic matter than to mineral N fertilisation. In conclusion the highest C sequestration was obtained with manure addition, with the highest rate of mineral fertilizers, and in the rotation containing the alfalfa ley. The effects of these factors were not additive.  相似文献   
17.
《Geoderma》2006,130(1-2):141-156
Sixteen Orthic Chernozemic surface soil samples, one half from virgin prairie and one half from adjacent cultivated prairie (cultivated for 31 to 94 years), were collected from eight sites throughout Southern Saskatchewan, Canada. Samples were analyzed for total organic C and a number of other chemical and physical properties. The virgin and cultivated soils at site No. 4 were selected for more detailed analysis by CP-MAS 13C NMR, Curie-point-pyrolysis-gas chromatography/mass spectrometry (Cp-Py-GC/MS), and by pyrolysis-field ionization mass spectrometry (Py-FIMS). Long-term cultivation resulted in large significant decreases in total SOM (soil organic matter), as represented by total soil organic C. There were significant increases in aromaticity of the SOM as a result of long-term cultivation as indicated by CP-MAS 13C NMR spectroscopy. This was mainly attributable to the result of cultivation-enhanced degradation of aliphatic C relative to aromatic C. Organic compounds identified in the Cp-Py-GC/MS spectra of the virgin and cultivated soils at site No. 4 consisted of n-alkanes (ranging from C11 to C22) and alkenes (ranging from C7:1 to C21:1), with the virgin soil being richer in alkenes than the cultivated soil. Other components identified were cyclic aromatics, carbocyclics, N-containing aromatics, N-heterocyclics, benzene and substituted benzenes, phenols and substituted phenols and substituted furans. The compounds identified appeared to originate from long-chain aliphatics, lignins, polyphenols, aromatics, polysaccharides, and N-containing compounds in the two soils. While qualitatively similar compounds were identified by Py-FIMS in the two soils, the total ion intensity (TII) of the virgin soil was almost 2.5 times as high as that of the cultivated soil. This suggests that cultivation made the organic matter less volatile, either by favouring the formation of higher molecular weight organic matter or by promoting the formation of non-volatile metal-organic matter complexes. The Py-FIMS spectra showed that the virgin soil contained relatively more lignin dimers, lipids, sterols, and n-C16 to n-C34 fatty acids than the cultivated soil. Thus, conversely, the cultivated soil was richer in carbohydrates, phenols and lignin monomers, alkyl aromatics and N-containing compounds, including peptides, than the virgin soil.  相似文献   
18.
Because preharvest sprouting decreases quantity and quality of wheat grain, researchers need effective protocols to assess response to preharvest sprouting conditions. The aim of this study was to determine which temperature gives the greatest difference in seed germination and expression of seed dormancy in 10 spring wheat genotypes. The genotypes were grown in the field near Swift Current, Saskatchewan in 2000 in a randomized complete block with four replicates. Seed samples were harvested at approximately 25% moisture content (wet weight basis) and dried to 12% moisture content with minimal after-ripening. Germination was under controlled environment at temperatures of 10, 15, 20 and 30 °C in darkness. A weighted germination index (WGI) was calculated. The analysis of WGI, for each temperature, showed highly significant (p ≤ 0.01) genotype effects on germination. Most genotypes decreased in WGI (increased dormancy) as temperature was increased from 10 to 30 °C. The greatest differences in seed germination tended to be at 15 °C and 20 °C. The level of seed dormancy depended on the genotype and germination temperature. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
19.
20.
Wheat functions as a complex well-integrated organism with adaptation to many environments. Traits of wheat may be correlated to each other in a positive or a negative manner. The direction of the correlation is independent of breeding objectives and may change from one production environment to another. Grain yield is correlated positively with time to maturity in environments without terminal stress. The negative correlation between grain yield and grain protein concentration exemplifies an undesirable relationship in a wheat quality type in which protein concentration is positively correlated with bread loaf volume. However, this same correlation has an advantage to those end-products that are favored by low protein concentration such as confectionary products. To shift the negative correlation between grain yield and protein concentration requires assembling a more photosynthetically efficient, nitrogen-use efficient and\or water-use efficient genotype in combination or separately. Simultaneous selection for quantitative and quality traits is a breeding strategy, which with the inclusion of marker assisted selection, can shift undesirable correlations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号