首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selection for water absorption, a fundamental wheat quality parameter, has been a challenge in wheat breeding programs due to limited wheat materials available for milling and consequent time-consuming farinograph test. Hence, a high shear-based method, which requires 8 g of flour and less than 10 min per test, was proposed to predict flour water absorption using the Brabender GlutoPeak instrument. Highly significant positive linear relationship (r2 = 0.97) was found between GlutoPeak maximum torque and farinograph water absorption for 83 flour samples prepared with Bühler test mill from wheat lines under evaluation in the Canadian wheat variety registration trials. Similar strong correlation (r2 = 0.96) was obtained from flours (n = 63) prepared with Quadrumat Junior laboratory mill using small amount of wheat. Flour prepared either with Bühler test mill or Quadrumat Junior mill can be used for predicting water absorption effectively. GlutoPeak maximum torque was found to be independent of dough strength (r2 = 0.02) as measured by extensigraph. GlutoPeak test can be a powerful tool for rapid and reliable prediction of water absorption of wheat flour.  相似文献   

2.
A rising global population necessitates continued genetic improvement of wheat (Triticum spp.), but not without monitoring of unintended consequences to processors and consumers. Our objectives were to re-establish trends of genetic progress in agronomic and milling traits using a generational meter stick as the timeline rather than cultivar release date, and to measure correlated responses in flour quality and human wheat-sensitivity indicators. Grain yield and kernel size showed stepwise increases over cycles, whereas wheat protein content decreased by 1.1 g/100 g. Reduced protein content, however, did not result in lower dough strength pertinent to bread baking. A novel method of directly testing gluten elasticity via the compression-recovery test indicated a general increase in gluten strength, whereas the ratio of total polymeric to total monomeric proteins remained stable. Also showing no change with genetic progress in yield were flour levels of gluten epitopes within the key immunotoxic 33-mer peptide. The oligosaccharide fructan, present in milled and wholemeal flours, increased with increasing grain yield potential. While yield improvement in U.S. bread wheat was not accompanied by a decline in gluten strength or systematic shift in a key wheat sensitivity parameter, the unanticipated rise in total fructans does implicate potentially new dietary concerns.  相似文献   

3.
In response to customer concerns related to gluten strength in commercial baking, the Canadian Grain Commission assessed whether the Canadian Short Process (CSP) test bake method was generating useful data related to intrinsic strength of wheat varieties. Assessment of CSP loaf volume data for Canadian variety trials spanning 2003 to 2013 showed very little correlation with dough strength parameters as measured by farinograph and extensigraph. A lean no time (LNT) test baking method was developed that can better discriminate genotypes and provide objective indicators of the effect of intrinsic dough strength on baking quality. From early method development, through method validation and verification using diverse sets of samples targeting different Canadian wheat classes and grown in three different crop years, results showed the LNT method to be more discriminating and easily adopted by other laboratories. In 2015, the LNT method was adopted as the method of choice in future Canadian variety registration trials. The LNT method is fast, simple and well-suited to high throughput test baking conditions encountered in the evaluation of large numbers of breeder lines. A new objective parameter, loaf top ratio, was also introduced and found to correlate well with dough strength and dough handling properties.  相似文献   

4.
In response to customer concerns related to gluten strength in commercial baking, the Canadian Grain Commission assessed whether the Canadian Short Process (CSP) test bake method was generating useful data related to intrinsic strength of wheat varieties. Assessment of CSP loaf volume data for Canadian variety trials spanning 2003 to 2013 showed very little correlation with dough strength parameters as measured by farinograph and extensigraph. A lean no time (LNT) test baking method was developed that can better discriminate genotypes and provide objective indicators of the effect of intrinsic dough strength on baking quality. From early method development, through method validation and verification using diverse sets of samples targeting different Canadian wheat classes and grown in three different crop years, results showed the LNT method to be more discriminating and easily adopted by other laboratories. In 2015, the LNT method was adopted as the method of choice in future Canadian variety registration trials. The LNT method is fast, simple and well-suited to high throughput test baking conditions encountered in the evaluation of large numbers of breeder lines. A new objective parameter, loaf top ratio, was also introduced and found to correlate well with dough strength and dough handling properties.  相似文献   

5.
Consumption of whole-wheat based products is encouraged due to their important nutritional elements that benefit human health. However, the use of whole-wheat flour is limited because of the poor processing and end-product quality. Bran was postulated as the major problem in whole wheat breadmaking. In this study, four major bran components including lipids, extractable phenolics (EP), hydrolysable phenolics (HP), and fiber were evaluated for their specific functionality in flour, dough and bread baking. The experiment was done by reconstitution approach using the 24 factorial experimental layout. Fiber was identified as a main component to have highly significant (P < 0.05) and negative influence on most breadmaking characteristics. Although HP had positive effect on farinograph stability, it was identified as another main factor that negatively impacted the oven spring and bread loaf volume. Bran oil and EP seemed to be detrimental to most breadmaking characteristics. Overall, statistical analysis indicates that influence of the four bran components are highly complex. The bran components demonstrate multi-way interactions in regards to their influence on dough and bread-making characteristics. Particularly, Fiber appeared to have a high degree of interaction with other bran components and notably influenced the functionality of those components in whole wheat bread-making.  相似文献   

6.
Selected Lactobacillus plantarum DSM 32248 and Lactobacillus rossiae DSM 32249, isolated and identified from wheat germ, were used to ferment a milling by-products mixture. Lactic acid bacteria metabolisms improved the functional properties of wheat bran and germ, which are considered important sources of functional compounds. Wheat breads were manufactured using 15% (w/w) of fermented (and unfermented) milling by-products, and compared to baker’s yeast wheat bread manufactured without the addition of milling by-products. The use of the fermented ingredient improved the biochemical, functional, nutritional, textural, and sensory features of wheat bread, showing better performances compared to the solely use of wheat flour. Protein digestibility, nutritional indexes, and the rate of starch hydrolysis markedly improved using fermented milling by-products as ingredient. Enriched bread was also characterized by high content of dietary fibre and low glycaemic index determined in vivo.This study exploited the potential of fermented milling by products as functional ingredient. According to the Regulations the bread made under this study conditions can be defined as “high fibre content” and “low glycaemic index”. A number of advantages encouraged the manufacture of novel and healthy and functional leavened baked goods.  相似文献   

7.
The poor technological performance of weak wheat flours means that they are usually considered difficult to be transformed into satisfactory bread. During milling, there are several settings that can affect flour characteristics. In this study, we tested two operative parameters that have the potential to affect flour quality – stone rotational speed and wheat tempering. Tempering moistures were set at 11%, 13%, 15%, and 17%, while stone rotational speeds were set at 173, 260, and 346 rpm. Both factors were found to affect operative milling parameters, notably flour yield, process productivity and specific energy consumption. Grain moisture had a significant effect on both dough rheology and bread characteristics (dough stability, tenacity, and extensibility). Dough stability was maximum at 13% moisture. Dough tenacity decreased as moisture increased, while extensibility increased as moisture increased. Bread specific volume and crumb specific volume were improved at 13% and 15% moisture. In conclusion, wheat tempering can be used to improve the potential of a weak flour and bread characteristics, while stone rotational speed affects operative parameters and white flour yield.  相似文献   

8.
The sponge and dough mixing process is one of the most common in the world, yet the mechanistic understanding of this process has yet to be sufficiently explored. In this study, aqueous solutions of ethanol, succinic acid, and their combination were prepared at concentrations intended to replicate fermentation times of 3, 4 and 6 h. These solutions were added to a farinograph mixer to make dough using hard wheat, soft wheat, and durum wheat flour. The results indicate that these yeast metabolites (ethanol, succinic acid) impact the mixing resistance, peak mixing value, and dough mixing stability in each of the flour types, likely primarily affected by the ratios of gliadin to glutenin and LMW glutenin in each flour type. Results suggest a stabilizing non-covalent interaction imparted by gliadin at peak mixing time, a stabilizing effect of HMW glutenin during break down, and synergistic effects of ethanol and succinic acid that leads to a faster rate of breakdown in later stages of mixing. It also suggests an increase in mixing resistance when acidulants are added to durum wheat dough. Taken together, this study adds new insights on the sponge and dough mixing process in a way that has not previously been conducted.  相似文献   

9.
Wheat gluten was isolated in a laboratory dough-batter flour separation process in the presence or absence of lipases differing in hydrolysis specificity. The obtained gluten was blended with wheat starch to obtain gluten-starch (GS) blends of which the water and oil binding capacities were investigated. Furthermore, GS blends were mixed into dough and processed into model breads, of which dough extensibility and loaf volume were measured, respectively. In comparison to GS blends prepared with control gluten, oil binding capacity was higher when GS blends contained gluten isolated with Lecitase Ultra (at 5.0 mg enzyme protein/kg flour), a lipase hydrolyzing both non-polar and polar lipids. Additionally, dough extensibility and total work needed for fracture were lower for dough prepared from GS blends containing gluten isolated with Lipolase (at 5.0 mg enzyme protein/kg flour), a lipase selectively degrading non-polar lipids. In GS blend bread making, this resulted in inferior loaf volumes. Comparable GS blend properties were measured when using control gluten and gluten isolated with YieldMAX, a lipase mainly degrading N-acyl phosphatidylethanolamine. In conclusion, properties of GS blend model systems are altered when gluten prepared in the presence of lipases is used to a degree which depends on lipase specificity and concentration.  相似文献   

10.
Celiac disease (CD) is an immune-mediated disease triggered by wheat gluten and related prolamins. A lifelong gluten-free (GF) diet is mandatory to normalize the intestinal mucosa. We previously found that transamidation by microbial transglutaminase of gluten was effective in suppressing the gliadin-specific inflammatory response in CD patients without influencing the main technological properties of wheat flour or semolina. In this study, we produced on a pilot scale a soluble form of transamidated gluten (soluble protein fraction, spf), characterised by a high protein content (88 mg/ml), while native gluten was dramatically reduced (32 ± 2 ppm; R5-ELISA). Using HLA-DQ8 transgenic mice as a CD model, we found suppression of interferon-γ secretion in gliadin-specific CD4+ T cells challenged with spf-primed dendritic cells. In terms of functional properties, spf showed both solubility and emulsifying activity values within the range of commercial soluble glutens. Notably, dough prepared by mixing rice flour with spf could leaven. After baking, blended rice bread had a higher specific volume (2.9 ± 0.1) than control rice bread (2.0 ± 0.1) and acquired wheat-like sensory features. Taken together, our results highlighted the technological value of transamidated soluble gluten to improve both nutritional and sensory parameters of GF food.  相似文献   

11.
Increases in the proportion of amylose in the starch of wheat grains result in higher levels of resistant starch, a fermentable dietary fiber associated with human health benefits. The objective of this study was to assess the effect of combined mutations in five STARCH BRANCHING ENZYME II (SBEII) genes on starch composition, grain yield and bread-making quality in two hexaploid wheat varieties. Significantly higher amylose (∼60%) and resistant starch content (10-fold) was detected in the SBEII mutants than in the wild-type controls. Mutant lines showed a significant decrease in total starch (6%), kernel weight (3%) and total grain yield (6%). Effects of the mutations in bread-making quality included increases in grain hardness, starch damage, water absorption and flour protein content; and reductions in flour extraction, farinograph development and stability times, starch viscosity, and loaf volume. Several traits showed significant interactions between genotypes, varieties, and environments, suggesting that some of the negative impacts of the combined SBEII mutations can be ameliorated by adequate selection of genetic background and growing location. The deployment of wheat varieties with increased resistant starch will likely require economic incentives to compensate growers and millers for the significant reductions detected in grain and flour yields.  相似文献   

12.
In soft wheat breeding programs, the gluten strength of flours from specific genotypes is determined by various chemical and rheological tests. Based on such tests, the experimental wheat lines with very weak flour gluten are typically selected for the production of soft-dough biscuits, while the lines with medium gluten strength and extensibility are reserved for hard-dough biscuits. Often, the genotypes having high gluten strength are removed from such breeding programs. In the present study, the usability of the GlutoPeak tester on whole wheat flour samples was investigated for assessing the gluten strength of soft wheat breeding materials. In the study, 25 soft wheat genotypes, grown in seven locations for three years, were categorized by commonly used gluten-quality-related parameters. Based on the results of the study GlutoPeak whole wheat flour PMT values ranging from 30.0 to 50.0 s and AM values from 15.0 to 20.0 GPU were found to be suitable for soft-dough biscuit products, whereas the values between 40.0 and 60.0 s and 20.0 and 23.0 GPU were appropriate for hard-dough biscuit products. The genotypes exhibiting AM values > 24.0 GPU and PMT values > 60.0 s were judged to have too-strong gluten, and thus eliminated from the breeding program. The gluten aggregation energy (AGGEN), and the torque after the maximum torque (PM) values were only useful and applicable to flours for soft-dough products. The maximum torque (BEM) values were not effective in discriminating against the genotypes. The results of this study demonstrated that the GlutoPeak whole wheat PMT and AM parameters can be recommended as quick and accurate parameters especially for early generation screening with small-scale tests in soft wheat improvement programs.  相似文献   

13.
Arising from work showing that conventionally bred high protein digestibility sorghum types have improved flour and dough functionality, the flour and dough properties of transgenic biofortified sorghum lines with increased protein digestibility and high lysine content (TG-HD) resulting from suppressed synthesis of several kafirin subclasses, especially the cysteine-rich γ-kafirin, were studied. TG-HD sorghums had higher flour water solubility at 30 °C (p < 0.05) and much higher paste viscosity (41% higher) than their null controls (NC). TG-HD doughs were twice as strong as their NC and dynamic rheological analysis indicated that the TG doughs were somewhat more elastic up to 90 °C. CLSM of doughs and pastes indicated that TG-HD had a less compact endosperm protein matrix surround the starch compared to their NC. The improved flour and dough functional properties of the TG-HD sorghums seem to be caused by reduced endosperm compactness resulting from suppression of synthesis of several kafirin subclasses which modifies protein body and protein matrix structure, and to improved protein-starch interaction through hydrogen bonding specifically caused by reduction in the level of the hydrophobic γ-kafirin. The improved flour functionality of these transgenic biofortified sorghums can increase their commercial utility by complementing their improved nutritional quality.  相似文献   

14.
Native and moistened wheat flours (moisture contents were 13.5 and 27.0%, respectively) were treated with superheated steam (SS) at different temperatures (140 and 170 °C) and times (1, 2 and 4 min). Their physicochemical and digestive properties were analyzed. For native flour, SS treatment altered the starch molecular structure and behavior slightly. While for moistened flour, crystalline degree, gelatinization enthalpy, amylose leaching (AML) and falling number significantly decreased, but thermal transition temperatures increased with the rise of treating severity. Clumping of starch granules, aggregation of proteins and formation of amylose-lipid complexes occurred in both native and moistened flours. Broader pasting temperature ranges and higher viscosities were found on SS-modified flours. Additionally, SS treatment on moistened flours increased resistant and slowly digestible starch contents. In general, SS treatment induced changes in starch molecular structure and reactions among flour components leading to more stable structures, thus affecting their pasting behavior, thermal properties and in vitro digestion.  相似文献   

15.
Waxy wheat flour (WWF) was substituted for 10% regular wheat flour (RWF) in frozen doughs and the physicochemical properties of starch and protein isolated from the frozen doughs stored for different time intervals (0, 1, 2, 4 and 8 weeks) were determined to establish the underlying reasons leading to the effects observed in WWF addition on frozen dough quality. Using Nuclear Magnetic Resonance (NMR), Differential Scanning Calorimeter (DSC) and X-ray Diffraction (XRD) among others, the gluten content, water molecular state, glutenin macropolymer content, damaged starch content, starch swelling power, gelatinization properties, starch crystallinity and bread specific volume were measured. Compared to RWF dough at the same frozen storage condition, 10% WWF addition decreased dry gluten and glutenin macropolymer contents and T23 proton density of frozen dough, but increased the wet gluten content, T21 and T22 proton density. 10% WWF addition also decreased damaged starch content, but increased starch swelling power, gelatinization temperature and enthalpy, crystallinity of starch and bread specific volume of frozen dough. Results in the present study showed that the improvement observed due to WWF addition in frozen dough bread quality might be attributed to its inhibition of redistribution of water molecules bound to proteins, increase in damaged starch content and decrease in starch swelling power.  相似文献   

16.
Volatile compounds formed during heat-treatment of wheat flour influence the application of treated flour. In this study, normal and waxy hard wheat flours before and after dry-heat treatment were subjected to headspace analysis by solid-phase microextraction of volatiles followed gas chromatography–mass spectrometry (GC/MS). The untreated waxy wheat flour contained higher levels of odor-active compounds than normal wheat flour including aldehydes, alcohols, furans, and ketones. Lipid oxidation appears to play major role in producing such odor compounds. Heat treatments, depending on the severity, alter the profile of volatile compounds. Low temperature (100–110 °C) treatments effectively eliminated cereal odor (aldehyde) and did not introduce additional odors, providing a possible way to produce low-odor flours. Heat treatments at 120 °C and higher temperatures elevated the content of pyrazines, furans, and sulfur-containing compounds which together gave a roasty aroma to the flours. Considering organoleptic properties, treatments of flours at 140 °C was superior to 160 °C. The waxy wheat flour was more prone to produce odor-active compounds than normal wheat flour during the same heat treatment.  相似文献   

17.
Native (NF, 13.5% w.b) and moistened (MF, 27% w.b) wheat flours were treated with superheated steam (SS) at 170 °C for 1, 2 and 4 min, and their protein structure as well as dough rheological properties were analyzed. Confocal laser scanning microscopy (CLSM) and SDS-PAGE patterns indicated the formation of protein aggregates with reduced SDS extractability after treatment. Farinograph and dynamic rheometry measurements showed that the strength as well as elastic and viscous moduli of the dough made from SS-treated flours progressively increased with SS treatment time. And both the improvements were more pronounced for superheated steam-treated moistened flours (SS-MF) than for superheated steam-treated native flours (SS-NF). Size-exclusion high performance liquid chromatography (SE-HPLC) analysis demonstrated that dough rheological parameters have positive correlations with SDS unextractable polymeric proteins (UPP) contents. SS treatment on flours led to a transition of protein secondary structures to more ordered form (α-helix and β-sheet). Additionally, free sulfhydryl (SH) contents decreased after treatment, which implied that disulfide bonds accounted for protein extractability loss and dough rheological properties improvement. Elevated moisture level promoted the modification of both protein structure and dough behaviors of flours during SS treatment.  相似文献   

18.
Arabinoxylans (AX) are part of dietary fiber. They are currently under study due to their potential prebiotic effect. Wheat whole grain flours contain all the grain layers and, therefore, present a higher arabinoxylan content than white flour. It is known that the chemical structure of these compounds varies with the type of wheat cultivar and the tissue from which they are extracted. In this work, water soluble extractable arabinoxylans (WE-AX) from two types of wheat whole flours (hard and soft) were extracted. We characterized the molecular size distribution and the potential prebiotic effect of those extracts. The prebiotic effect was evaluated in vitro and confirmed in vivo. Bacterial group abundance (Lactobacillus, Bifidobacterium, Clostridium, Enterococcus, Bacteriodes and total bacteria) was determined by quantitative RT-PCR. The molecular size of AX from hard wheats was significantly higher than AX from soft wheats. Both extracts showed potential prebiotic activity by increasing the growth of beneficial bacteria in vitro and in vivo, decreasing the pathogens in the profile of intestinal microorganisms and increasing the amount of short chain fatty acids in the intestine. WE-AX from hard wheat showed a higher prebiotic activity. Prebiotic effect assessed in vitro and in vivo assays showed a significant correlation between both types of analysis. This finding suggests that the in vitro indices performed allow predicting the potential prebiotic effect in vivo.  相似文献   

19.
Dough rheological properties and noodle-making performance of non-waxy whole-wheat flour (WWF) with partial- or full-waxy (PW- or FW-) WWF substitution were studied. The substitution levels were 0, 250, 500, 750, and 1000 g/kg, respectively. FW-WWF reduced the peak viscosity and pasting temperature of WWF blends as its substitution level was increased due to its higher proportions of B-type starch granules and short amylopectin chains, while PW-WWF increased peak viscosity with the increasing substitution level because of its higher amylopectin content. As demonstrated by farinograph and rheometer measurements, FW-WWF interfered with gluten development because of the increased competition for water by arabinoxylans and amylopectin; however, PW-WWF enhanced dough strength due primarily to its increased protein content. Consequently, FW-WWF showed a detrimental effect on cooked noodle texture as the cooked noodle hardness was reduced by 50% at the 1000 g/kg substitution level. In contrast, PW-WWF enhanced noodle integrity and elasticity by increasing cooked noodle cohesiveness and resilience by 10.1% and 14.8%, respectively, at the 1000 g/kg substitution level. The results suggest that with waxy WWF substitution, the changes in starch composition, arabinoxylans, and protein content could modify the interactions among flour components and influence the quality characteristics of noodle products.  相似文献   

20.
Two locally grown wheat species named Triticum aestivum L. and Triticum vulgare L. were studied for their phytochemical contents and their biological activities. T. vulgare presented the highest amounts of total phenolic compounds and ascorbic acids while T. aestivum was found to be rich in flavonoids, flavonols, proanthocynidins and ortho-diphenols. Eleven carotenoids were identified in T. vulgare where the most dominant compounds belongs to α-carotene and its derivatives while T. aestivum presented seven carotenoids. This later presented the highest DPPH radical scavenging activity and exhibited a strong reducing power in FRAP, phosphomolybdenum, hydrogen peroxide and reducing power assays. T. vulgare extract was found to be effective in metal chelating power and in scavenging nitric oxide radical. No significant differences in scavenging ABTS and hydroxyl radicals were noted between the two wheat species. T. aestivum inhibited xanthine oxidase and ROS production and showed the best cytotoxic effect while T. vulgare extract exhibited anti-calpain activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号