首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   2篇
  国内免费   5篇
农学   4篇
基础科学   4篇
  21篇
综合类   20篇
农作物   2篇
畜牧兽医   24篇
植物保护   2篇
  2024年   1篇
  2023年   2篇
  2022年   2篇
  2021年   12篇
  2020年   8篇
  2019年   4篇
  2018年   3篇
  2017年   3篇
  2016年   1篇
  2015年   4篇
  2013年   5篇
  2012年   6篇
  2011年   4篇
  2010年   4篇
  2009年   2篇
  2008年   2篇
  2007年   5篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2002年   1篇
  2001年   2篇
  1988年   1篇
排序方式: 共有77条查询结果,搜索用时 31 毫秒
1.
河西绿洲灌区留茬覆盖免耕保护性耕作的增产节水效应   总被引:5,自引:1,他引:4  
试验设20 cm留茬压倒(NPS20),40 cm留茬压倒(NPS40),40 cm立秆(NS40),20 cm立秆(NS20),6 750kg/hm2覆盖(NSB40),3 750 kg/hm2覆盖(NSB20)和传统耕作(CT)7个处理,在节水1 950 m3/hm2的条件下,研究了不同的秸秆覆盖量、留茬高度和秸秆处理对小麦产量、水分利用效率(WUE)和不同时期土壤水分的影响。结果表明,留茬覆盖免耕保护性耕作提高了春小麦的产量,NPS20,NPS40,NS40,NS20,NSB40和NSB20较CT分别增产53.08%,46.59%,40.81%,19.93%,17.33%和4.34%;留茬覆盖免耕保护性耕作提高了春小麦的水分利用效率(WUE)(NPS20,NS40,NPS40,NS20,NSB40,NSB20分别较CT提高58.02%,43.40%,47.27%,23.78%,20.69%,8.56%),但增加了小麦生育期土壤水分支出;不同处理在不同时期对土壤水分的影响不同。  相似文献   
2.
A field experiment was conducted in 2003 and 2004 growing seasons to evaluate the effects of regulated deficit irrigation on yield performance in spring wheat (Triticum aestivum) in an arid area. Three regulated deficit irrigation treatments designed to subject the crops to various degrees of soil water deficit at different stages of crop development and a no-soil-water-deficit control was established. Soil moisture was measured gravimetrically in the increment of 0–20 cm every five to seven days in the given growth periods, while that in 20 increments to 40, 40–60, 60–80, and 80–100 cm depth measured by neutron probe. Compared to the no-soil-water-deficit treatment, grain yield, biomass, harvest index, water use efficiency (WUE), and water supply use efficiency (WsUE) in spring wheat were all greatly improved by 16.6–25.0, 12.4–19.2, 23.5–27.3, 32.7–39.9, and 44.6–58.8% under regulated deficit irrigation, and better yield components such as thousand-grain weight, grain weight per spike, number of grain, length of spike, and fertile spikelet number were also obtained, but irrigation water was substantially decreased by 14.0–22.9%. The patterns of soil moisture were similar in the regulated deficit treatments, and the soil moisture contents were greatly decreased by regulated deficit irrigation during wheat growing seasons. Significant differences were found between the no-soil-water-deficit treatment and the regulated soil water deficit treatments in grain yield, yield components, biomass, harvest index, WUE, and WsUE, but no significant differences occurred within the regulated soil water deficit treatments. Yield performance proved that regulated deficit irrigation treatment subjected to medium soil water deficit both during the middle vegetative stage (jointing) and the late reproductive stages (filling and maturity or filling) while subjected to no-soil-water-deficit both during the late vegetative stage (booting) and the early reproductive stage (heading) (MNNM) had the highest yield increase of 25.0 and 14.0% of significant water-saving, therefore, the optimum controlled soil water deficit levels in this study should range 50–60% of field water capacity (FWC) at the middle vegetative growth period (jointing), and 65–70% of FWC at both of the late vegetative period (booting) and early reproductive period (heading) followed by 50–60% of FWC at the late reproductive periods (the end of filling or filling and maturity) in treatment MNNM, with the corresponding optimum total irrigation water of 338 mm. In addition, the relationships among grain yield, biomass, and harvest index, the relationship between grain yield and WUE, WsUE, and the relationship between harvest index and WUE, WsUE under regulated deficit irrigation were also estimated through linear or non-linear regression models, which indicate that the highest grain yield was associated with the maximum biomass, harvest index, and water supply use efficiency, but not with the highest water use efficiency, which was reached by appropriate controlling soil moisture content and water consumption. The relations also indicate that the harvest index was associated with the maximum biomass and water supply use efficiency, but not with the highest water use efficiency.  相似文献   
3.
《Applied soil ecology》2007,35(2-3):200-208
The temporal and spatial dynamics of arbuscular mycorrhizal fungi (AMF) were investigated in Indian Thar Desert. Soil samples under Mitragyna parvifolia were collected from July 2003 to June 2004. AMF colonization and spore density were used to compare the responses of AMF to different abiotic parameters. The mean percent colonization and spore density of AMF reached maximal values in rainy and summer seasons, respectively. Vesicular and hyphal colonizations were positively correlated with soil organic carbon content. AMF spore density was positively correlated with soil pH and negatively correlated with Olsen P content. A high Shannon–Weiner diversity index of AMF was observed in Thar Desert. A total of fifteen AMF species were associated with M. parvifolia. Percent spore density and species richness suggest that the genus Glomus was the predominant AMF under Thar Desert environment. The reasons for the observed variations are discussed.  相似文献   
4.
5.
水生植物对农田排水沟渠氮磷迁移生态阻控效果比较研究   总被引:12,自引:3,他引:9  
以亚热带红壤小流域为研究区域,选取2 m底宽、1 m深的小型农田排水沟渠,种植美人蕉(Canna indica)、狐尾藻(Myriophyllum spicatum)、黑三棱(Sparganium stoloniferum)、灯心草(Juncus effusus)、铜钱草(Hydrocotyle vulgaris)、水芹菜(Oenanthejavanica)等6种多年生水生植物,研究了农业面源污染的生态阻控技术措施及其效果。结果表明,6种水生植物的生态阻控效果差异显著(P<0.01),其生物量变化范围为0.58kg/m2~2.32kg/m2,其中以美人蕉为最大,水芹菜到夏季后进入休眠期,其生物量最低。植物体地上部N、P含量(干基)变化范围分别为N 8.06 g/kg~16.39g/kg和P 1.34 g/kg~3.82 g/kg,地下部分N、P含量变化范围分别为N 5.83 g/kg~10.80 g/kg和P 1.34 g/kg~3.35 g/kg。从生态拦截效果来看,以美人蕉对N的富集能力最强,达到23.90 g/m2,而黑三棱对P的富集能力最强(4.04 g/m2)。总的来讲,美人蕉和黑三棱在试验区具有明显的N、P生态拦截优势,其地上植株还可用作草食性动物的饲料,或者生物质覆盖还田,实现N、P资源循环利用与环境保护的有机结合。  相似文献   
6.
《农业科学学报》2019,18(7):1474-1485
The application of straw and biochar is widely practiced for the improvement of soil fertility. However, its impact on microbial functional profiles, particularly with regard to paddy soils, is not well understood. The aim of this study was to investigate the diversity of microbial carbon use patterns in paddy soils amended with straw or straw-derived biochar in a 3-year field experiment in fallow soil and at various development stages of a rice crop(i.e., tillering and blooming). We applied the community level physiological profiling approach, with 15 substrates(sugars, carboxylic and amino acids, and phenolic acid). In general, straw application resulted in the greatest microbial functional diversity owing to the greater number of available C sources than in control or biochar plots. Biochar amendment promoted the use of α-ketoglutaric acid, the mineralization of which was higher than that of any other substrate. Principal component analyses indicated that microbial functional diversity in the biochar-amended soil was separated from those of the straw-amended and control soils. Redundancy analyses revealed that soil organic carbon content was the most important factor regulating the pattern of microbial carbon utilization. Rhizodeposition and nutrient uptake by rice plants modulated microbial functions in paddy soils and stimulated the microbial use of N-rich substances, such as amino acids. Thus, our results demonstrated that the functional diversity of microorganisms in organic amended paddy soils is affected by both physicochemical properties of amendment and plant growth stage.  相似文献   
7.
锌作为动物机体一种不可缺少的微量元素,在加强机体免疫方面起着重要作用。基于微量元素锌对动物机体免疫功能的调节作用机理研究的日益深入,文中通过阐述有机锌作用、功效以及在哺乳动物生产中的应用,探究有机锌单独添加对哺乳动物先天性免疫的影响,旨在探究锌对动物机体先天性免疫的调控机制。  相似文献   
8.
《CATENA》2004,55(1):33-48
The Three Gorge Project (TGP) of China necessitates the resettlement of over 1 million population (mostly farmers) to more rugged and isolated areas than their original settlements. Soil erosion is a serious environmental and production problem in this area. To decrease the risk on environmental impacts, there is an increasing demand for sound, and readily applicable techniques for soil conservation planning in the Three Gorge Areas (TGA). The objectives of the study were to develop and validate a soil erosion-predicting model based on the revised Universal Soil Loss Equation (RUSLE) in a geographic information systems (GIS) environment. The use of GIS to develop conservation-oriented watershed management strategies in the Wangjiaqiao watershed is presented. Data used for the RUSLE were either determined or taken from published literature pertaining to the Wangjiaqiao watershed. In combination with IDRISI, GIS software (Eastman, R.J., 1997. IDRISI for Windows: User's guide (Version 2.0). Clark University, Graduate School of Geography, Worcester, MA, Chapters 4–17) was used to evaluate different agricultural management strategies in terms of predicted soil loss in the watershed. This model allowed for easy assessment of soil erosion hazards under different crop and land management options over the entire watershed. The study revealed that the annual average soil loss rate from relatively flat agricultural land was approximately 26 t/ha, whereas 52 t/ha was found on the cultivated sloping lands, which constitutes a large proportion of soil loss in the watershed. In the watershed, approximately 38 ha of agricultural land had slopes >47% (25°) and should be reforested or returned to pasture. Contour tillage (CT) and contour farming with a seasonal no-till ridge (CTN) were most effective in reducing soil loss rates. If CT and CTN were implemented, approximately 31% and 70%, respectively, of the areas with soil loss >TEP would be reduced to <TEP. TEP is soil loss tolerance for economic planning and was set at ≤10 t/ha year. In addition to soil loss reduction, the CTN has the potential to increase crop yield. Soil erosion hazards may be alleviated in over 91% of the agricultural lands if combined conservation measures including terraces, CTN, CT, and crop rotations were implemented in the watershed. The results of the study indicate that the RUSLE-GIS model is a useful tool for resource management and soil conservation planning. This technology is readily transferable and accessible to other land managers and agronomists in the TGA.  相似文献   
9.
Mat rush (Juncus effusus L.), used for ‘Tatami’ (a traditional Japanese mat), is a type of crop requiring a large amount of fertilizer (450–600 kg ha−1 of N). In a heavily fertilized mat rush paddy field we examined the monitoring of soil water content (θ) by using the water content reflectometer (WCR). WCR sensors with and without coating rods were prepared and tested for their performance in different solutions. In addition, these sensors for Gley Lowland Soils were also calibrated for measuring θ. The results showed that the measured water content using the uncoated WCR, increasing with the EC of the solution, was 1.6 times of that for distilled water while the output for the coated WCR became 1.04 times. The coating prevents conduction losses while it influences the sensitivity of the WCR sensor. The monitoring of θ using both coated and uncoated WCR sensors in a mat rush paddy field was conducted throughout a cropping season. For the coated sensors, water content could be determined accurately even after fertilizer applications, while with the uncoated sensors it was overestimated. Thus, it was concluded that the use of insulated WCR sensors make it possible to accurately monitor the near surface soil moisture in a heavily fertilized paddy field.  相似文献   
10.
富硒土壤生物转硒技术的研究进展   总被引:2,自引:1,他引:1  
印遇龙  颜送贵  王鹏祖  白苗苗  刘红南 《土壤》2018,50(6):1072-1079
本文论述了生物转硒技术的应用价值和意义,总结了有机硒生成的专利和生物转硒的技术特点,并对生物转硒技术的发展进行了展望。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号