首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   405篇
  免费   25篇
  国内免费   12篇
林业   4篇
农学   190篇
基础科学   15篇
  56篇
综合类   37篇
农作物   111篇
水产渔业   1篇
畜牧兽医   4篇
园艺   3篇
植物保护   21篇
  2023年   3篇
  2022年   6篇
  2021年   5篇
  2020年   10篇
  2019年   8篇
  2018年   18篇
  2017年   36篇
  2016年   19篇
  2015年   26篇
  2014年   17篇
  2013年   44篇
  2012年   14篇
  2011年   22篇
  2010年   35篇
  2009年   18篇
  2008年   13篇
  2007年   41篇
  2006年   30篇
  2005年   13篇
  2004年   12篇
  2003年   8篇
  2002年   3篇
  2001年   8篇
  2000年   1篇
  1999年   4篇
  1998年   8篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1993年   2篇
  1990年   3篇
  1988年   1篇
  1983年   1篇
  1982年   1篇
  1977年   1篇
  1973年   2篇
排序方式: 共有442条查询结果,搜索用时 15 毫秒
1.
Genome-wide association studies (GWAS) are useful to facilitate crop improvement via enhanced knowledge of marker-trait associations (MTA). A GWAS for grain yield (GY), yield components, and agronomic traits was conducted using a diverse panel of 239 soft red winter wheat (Triticum aestivum) genotypes evaluated across two growing seasons and eight site-years. Analysis of variance showed significant environment, genotype, and genotype-by-environment effects for GY and yield components. Narrow sense heritability of GY (h 2  = 0.48) was moderate compared to other traits including plant height (h 2  = 0.81) and kernel weight (h 2  = 0.77). There were 112 significant MTA (p < 0.0005) detected for eight measured traits using compressed mixed linear models and 5715 single nucleotide polymorphism markers. MTA for GY and agronomic traits coincided with previously reported QTL for winter and spring wheat. Highly significant MTA for GY showed an overall negative allelic effect for the minor allele, indicating selection against these alleles by breeders. Markers associated with multiple traits observed on chromosomes 1A, 2D, 3B, and 4B with positive minor effects serve as potential targets for marker assisted breeding to select for improvement of GY and related traits. Following marker validation, these multi-trait loci have the potential to be utilized for MAS to improve GY and adaptation of soft red winter wheat.  相似文献   
2.
Increasing soil carbon (C) in arable soils is an important strategy to achieve sustainable yields and mitigate climate change. We investigated changes in soil organic and inorganic carbon (SOC and SIC) under conservation agriculture (CA) in a calcareous soil of the eastern Indo-Gangetic Plains of India. The treatments were as follows: conventional-till rice and wheat (CT-CT), CT rice and zero-till wheat (CT-ZT), ZT direct seeded rice (DSR) and CT wheat (ZT-CT), ZTDSR and ZT wheat without crop residue retention (ZT-ZT), ZT-ZT with residue (ZT-ZT+R), and DSR and wheat both on permanent beds with residue (PB-PB+R). The ZT-ZT+R had the highest total SOC in both 0–15 and 15–30 cm soil layers (20% and 40% higher (p < .05) than CT-CT, respectively), whereas total SIC decreased by 11% and 15% in the respective layers under ZT-ZT+R compared with CT-CT. Non-labile SOC was the largest pool, followed by very labile, labile and less labile SOC. The benefits of ZT and residue retention were greatest for very labile SOC, which showed a significant (p < .05) increase (~50%) under ZT-ZT+R compared with CT-CT. The ZT-ZT+R sequestered ~2 Mg ha−1 total SOC in the 0–15 cm soil layer in 6 years, where CT registered significant losses. Thus, the adoption of CA should be recommended in calcareous soils, for C sequestration, and also as a reclamation technique.  相似文献   
3.
Irrigated agriculture may negatively affect groundwater quality and increase off-site salt and nitrate contamination. Management alternatives aimed at reducing these potential problems were analysed in the 15498 ha CR-V Irrigation District (Spain) by monitoring 49 wells and modelling the hydrological regime in a representative well of the Miralbueno Aquifer. Groundwaters presented low to moderate electrical conductivity (EC) (mean = 0.89 dS/m) and high [NO3] (mean = 94 mg/L). The groundwater depth (GWD) during the 2001 hydrological year responded to the annual cycles of precipitation and irrigation as well as to the secondary cycles derived from irrigation scheduling. GWD were consistently simulated by the groundwater BAS-A model. Model results indicate that an increase in irrigation efficiency and the pumping of groundwater for irrigation will decrease GWD and aquifer's discharge by 56–70%, depending on scenarios. These recommendations will save good-quality water in the reservoir, will be beneficially economical to farmers, and will minimize off-site salt and nitrogen contamination.  相似文献   
4.
Black point (BP) can cause severe losses to the barley industry through downgrading and discounting of malting barley. The genetic improvement in BP resistance of barley is complex, requiring reliable screening tools, an understanding of genotype by environment interactions and an understanding of the biochemical mechanisms of melanisation involved in BP development. Thus the application of molecular markers for resistance to BP may be a useful tool for plant breeders. We have investigated the genetic regions associated with BP resistance in the barley F2 population, Valier/Binalong. Quantitative trait loci (QTLs) contributed by the resistant parent Valier, were detected on chromosomes 2HS, 2HC, 3HL, 4HL and a QTL contributed by the susceptible parent, Binalong was detected on 5HL. Three of the four QTLs were detected in two distinctly different environments. The differences observed in BP resistance between these two environments and the implications for accelerated screening are discussed. Identified SSR markers in these regions may be useful for selecting black point resistance in related breeding materials.  相似文献   
5.
Telone C-35, a commercial formulation of 1,3-dichloropropene (1,3-D) and chloropicrin (CP), is one of the potential replacements to methyl bromide (MB) for soil fumigation. A laboratory dose–response study and two field trials in tomato were conducted to evaluate their weed control efficacy and their effect on tomato yield. Laboratory studies found that the seeds of Digitaria chinensis were the most sensitive to soil fumigation with Telone C-35, followed by Eleusina indica, Portulaca oleracea and Stellaria media with the LC50 values between 3.35 and 11.68 mg kg−1 soil. Field trials revealed that Telone C-35 applied to the field at 327, 243 and 164 L ha−1 could suppress the percentage of germination weed seeds while maintaining high tomato marketable yields, with no significant differences between MB + CP and the higher two Telone C-35 rates. The yield data from both seasons indicated that all Telone C-35 treatments had a positive effect on tomato yield; there was a 32%–62% increase the mean marketable tomato yield. Our results indicated that Telone C-35 was an excellent MB alternative and could provide acceptable weed control efficacy. Based on our results, Telone C-35, in combination with other alternatives to MB, is recommended to achieve integrated pest management.  相似文献   
6.
In double rice-cropping system in China, zero tillage in late-season rice with straw return from early season rice is an emerging technology for saving inputs, shortening the lag time between rice crops, avoiding straw burning, and conserving natural resources. The objective of this 2-year field study was to determine the effects of tillage and straw return on N uptake, grain yield, and N use efficiency of late-season rice. Treatments were arranged in a split-plot design with four combinations of tillage and straw return as main plots and three N management practices as subplots. Tillage was either conventional soil puddling or zero tillage with newly harvested crop residue from early season rice either removed or placed on the soil surface without incorporation. The N treatments were zero-N control, site-specific N management (SSNM), and farmers’ N-fertilizer practice (FFP). Straw return regardless of tillage or N management did not reduce rice yield. In the second year, straw return significantly increased grain yield in the zero-N control. Chlorophyll meter readings at heading and total N uptake at maturity were higher with straw return in the zero-N control, suggesting that straw provides nutrients to rice in the late growing period. Zero tillage did not reduce N uptake, grain yield, and N use efficiency compared with conventional tillage. Despite large differences in timing and rate of N application between FFP and SSNM, these two N treatments resulted in comparable N uptake and grain yield of late-season rice regardless of tillage and straw return. These results suggest that zero tillage after early rice with straw return could replace conventional tillage for late rice in the double rice-cropping system in China.  相似文献   
7.
A rapid warming of 2.8–5.3 °C by the end of this century is expected in South Korea. Considering the current temperature during the spring potato growing season (emergence to harvest; ca. 18 °C), which is near the upper limit of the optimum temperature for potato yield, the anticipated warming will adversely affect potato production in South Korea. The present study assessed the impact of high temperature on the marketable tuber yield and related traits of cv. Superior (which makes up 71% of the annual potato production in South Korea) in four temperature-controlled plastic houses and an outdoor field (37.27°N, 126.99°E) during 2015–2016. The target temperatures of the four plastic houses were set to ambient (AT), AT+1.5 °C, AT+3.0 °C, and AT+5.0 °C. The marketable tuber yield was significantly reduced by 11% per 1 °C increase over a temperature range of 19.1–27.7 °C. The negative impact of high temperature was associated not only with the yield loss of total tubers, which was mostly explained by the slower tuber bulking rate, but also the reduced marketable tuber ratio under temperatures above 23 °C, which was mainly attributed to the reduced number of marketable tubers (r = 0.79***). Under moderate temperatures below 23 °C, the source limited the number of marketable tubers without reducing the marketable tuber ratio. In contrast, the number of marketable tubers was limited by the marketable tuber set at the early growth stage rather than the source under the higher temperatures, which resulted in the reduction in the marketable tuber ratio below 56%. These results suggest that the objectives of breeding and agronomic management for adapting to the rapid warming in South Korea should include maintaining the ability to form tubers at the early growth stage under high temperatures, as well as the photosynthetic capacity and sink strength of the tubers.  相似文献   
8.
The source–sink ratio during grain filling is a critical factor that affects crop yield in wheat, and the main objective of this study was to determine the source–sink relations at both the canopy scale and the individual culm level under two nitrogen (N) levels at the post-jointing stage.  Nine widely-used cultivars were chosen for analyzing source–sink relations in southwestern China; and three typical cultivars of different plant types were subjected to artificial manipulation of the grain-filling source–sink ratio to supplement crop growth measurements.  A field experiment was conducted over two consecutive seasons under two N rates (N+, 150 kg ha–1; N–, 60 kg ha–1), and three manipulations were imposed after anthesis: control (Ct), removal of flag and penultimate leaves (Lr) and removal of spikelets on one side of each spike (Sr).  The results showed that the single grain weights in the three cultivars were significantly decreased by Lr and increased by Sr, which demonstrated that wheat grain yield potential seems more source-limited than sink-limited during grain filling, but the source–sink balance was obviously changed by climatic variations and N deficient environments.  Grain yield was highly associated with sink capacity (SICA), grain number, biomass, SPAD values, and leaf area index during grain filling, indicating a higher degree of source limitation with an increase in sink capacity.  Therefore, source limitation should be taken into account by breeders when SICA is increased, especially under non-limiting conditions.  Chuanmai 104, a half-compact type with a mid-sized spike and a long narrow upper leaf, showed relatively better performance in source–sink relations.  Since this cultivar showed the characteristics of a lower reduction in grain weight after Lr, a larger increase after Sr, and a lower reduction in post-anthesis dry matter accumulation, then the greater current photosynthesis during grain filling contributed to the grain after source and sink manipulation.   相似文献   
9.
Understanding the heterosis in multiple environments between different heterotic groups is of fundamental importance in successful maize breeding. A total of 737 hybrids derived from 41 maize inbreds were evaluated over two years, with the aim of assessing the genetic diversity and their performance between heterotic groups under drought-stressed (DS) and well-watered (WW) treatments. A total of 38 737 SNPs were employed to assess the genetic diversity. The genetic distance (GD) between the parents ranged from 0.05 to 0.74, and the 41 inbreds were classified into five heterotic groups. According to the hybrid performance (high yield and early maturity between heterotic groups), the heterosis and heterotic patterns of Iowa Stiff Stalk Synthetic (BSSS)×Non-Stiff Stalk (NSS), NSS×Sipingtou (SPT) and BSSS×SPT were identified to be useful options in China's maize breeding. The relative importance of general and specific combining abilities (GCA and SCA) suggests the importance of the additive genetic effects for grain yield traits under the WW treatment, but the non-additive effects under the DS treatment. At least one of the parental lines with drought tolerance and a high GCA effect would be required to achieve the ideal hybrid performance under drought conditions. GD showed a positive correlation with yield and yield heterosis in within-group hybrids over a certain range of GD. The present investigation suggests that the heterosis is due to the combined accumulation of superior genes/alleles in parents and the optimal genetic distance between parents, and that yield heterosis under DS treatment was mainly determined by the non-additive effects.  相似文献   
10.
Meeting demands for increased cereal production in China   总被引:1,自引:0,他引:1  
Meeting demands for increased cereal production in China is a great challenge and this paper provides updated information on cereal production and the potential adaptation of cropping systems to climate change, as well as on progress in improving yield potential and developing molecular markers and GM cereals in China. Maize production and soybean imports are increasing significantly to meet the strong demand for feed by a rapidly growing livestock industry. Extension of the rice and maize growing seasons in northeastern China and improvement of the cropping system through delayed wheat planting have contributed to improving cereal productivity despite changing climatic conditions. Significant improvements in yield potential of rice, maize, and wheat have been achieved. Comparative genomics has been successfully used to develop and validate functional markers for processing quality traits in wheat, and also for developing new varieties. Although transgenic Bt rice and maize, and maize expressing phytase have been developed, their commercialization has not been officially permitted. International collaboration has contributed significantly to cereal production by providing germplasm and improved crop management practices. Full integration of applied molecular technologies into conventional breeding programs and promotion of lower-input technologies, will play a key role in increasing and sustaining future cereal production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号