首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   9篇
  国内免费   1篇
  1篇
综合类   26篇
  2024年   1篇
  2023年   6篇
  2022年   6篇
  2021年   3篇
  2020年   5篇
  2019年   6篇
排序方式: 共有27条查询结果,搜索用时 109 毫秒
1.
为探究含铁矿物和有机物添加对生菜砷酸盐毒性的调控作用,采用高分辨扫描电镜和X射线光电子能谱表征培养液中外源添加物与砷(As)之间的相互作用,采用高效液相色谱串联电感耦合等离子体质谱法测定不同处理组生菜中As的存在形态及累积变化状况,并综合考察了营养元素含量、超氧化物酶浓度和丙二醛含量等抗氧化系统和纤维素等指标的变化。结果表明:培养液中的As通过物理吸附或化学作用力结合在黄铁矿表面,添加谷氨酸促进了该过程的发生,从而抑制了As从植物根部向可食部的迁移。当生菜生长至第20~40天,相比黄铁矿单独处理,黄铁矿和谷氨酸组合处理使无机As浓度降低35.9%,总As浓度降低16.9%;与谷氨酸单独处理相比,无机As浓度降低4.0%,总As浓度降低21.8%。在植物叶片中,相比As (Ⅴ)单独处理组,黄铁矿和谷氨酸的添加使叶质量和叶绿素含量分别提高了20.8%~30.8%和17.1%~25.5%,通过增加叶片中超氧化物酶的合成限制活性氧在体内的积累,减少脂质过氧化反应。黄铁矿添加具有促进营养元素吸收的作用,而谷氨酸添加有利于缓解由As胁迫引起的植物氧化应激作用。相比黄铁矿单独处理,黄铁矿和谷氨酸组合处理更有利于植物对镁(Mg)、锰(Mn)、铜(Cu)和铁(Fe)元素的吸收,增强植物对As的抗逆性。同时,与谷氨酸或黄铁矿单独处理相比,二者组合处理提升了植物的品质,分别使维生素C含量提高了42.5%和69.3%,纤维素含量提高了21.2%和374.6%,蛋白质含量提高了71.4%和21.4%。研究表明,黄铁矿和谷氨酸组合处理能有效降低溶液中As的迁移和生菜叶片中As的积累,有利于植物体中活性氧的清除,并可提高植物对营养元素的吸收,促进品质改善。  相似文献   
2.
3.
为开发对Cd(Ⅱ)具有优异吸附性能的吸附材料,本研究采用溶剂热法制备了共价有机骨架(COFs)材料,使用1,3,5-三醛基间苯三酚(TP)和联苯胺(BD)单体合成TpBD COF,1,3,5-三醛基间苯三酚(TP)、联苯胺(BD)和4,4-二氨基联苯-2,2-二羧酸(DAA)单体合成TpBD COOH COF,采用扫描电镜、X射线衍射仪、傅里叶红外光谱对两种材料的性质进行分析,考察了TpBDCOF和 TpBD COOH COF对 Cd(Ⅱ)的吸附效果,并通过纳米粒度电位仪(Zeta电位)和光电子能谱分析了 TpBD COOH COF对Cd(Ⅱ)的吸附机理。结果表明:添加DAA单体可有效地将羧基( COOH)官能团修饰到TpBD COF上,形成TpBD COOH COF材料。吸附实验结果显示,当达到吸附平衡时,两种材料对Cd(Ⅱ)的吸附能力大小为TpBD COOH COF(142.0 mg·g-1)>TpBD COF(29.6 mg·g-1)。TpBD COOH COF 对 Cd(Ⅱ)的吸附动力学符合准二级动力学模型,Langmuir吸附模型可以更好地描述 TpBDCOOH COFs 对 Cd(Ⅱ)的吸附过程,TpBD COOH COF 对 Cd(Ⅱ)的吸附机理主要是静电作用和配位作用。在实际水体中,TpBD COOH COF对Cd(Ⅱ)的吸附并未受到明显影响,说明其具有很好环境适应性,在去除水环境中的Cd(Ⅱ)方面具有较好的应用潜力。  相似文献   
4.
土壤、沉积物、水体和生物体之间的接触和作用形成了多种环境微界面。这些环境微界面是物质迁移转化的重要场所,而高度时空异质性的界面特征使得对其中化学反应信息的捕捉变得极其复杂且困难。薄膜梯度扩散(DGT)技术以其原位测量元素生物有效态和高空间分辨率等优势,适用于研究化学异质性的界面过程。本文系统总结了DGT技术在环境微界面的物质运移过程研究中的应用现状,包括以下3方面内容:一是一维物质浓度测定;二是二维化学分布成像;三是与薄膜扩散平衡技术(DET)、平衡式孔隙水采样器(Peeper)和平面光极(PO)等技术联用同步获取多种溶质分布信息。现有研究证据表明,DGT适合在亚毫米(几十至几百微米)至毫米尺度研究环境微界面营养盐和污染物运移的生物地球化学过程,并可与其他化学成像技术结合研究物质跨界面运移的驱动因子和动力学特征。最后,在DGT技术发展与应用场景扩展等方面提出了几点展望。  相似文献   
5.
建立了直接进样同时测定水体中41种初级芳香胺化合物的超高效液相色谱-串联质谱方法(UPLC-MS/MS)。样品不净化,直接过0.22μm滤膜上机检测。采用Phenomenex Kinetex F5液相色谱柱(3 mm×100 mm,2.6μm)进行分离,以0.05%甲酸水溶液-甲醇作为流动相进行梯度洗脱,流速为0.45 mL?min-1。采用正离子模式电喷雾电离(ESI+),多反应监测(MRM)模式检测,标准曲线外标法定量。结果表明,41种初级芳香胺化合物在0.08~50μg·L~(-1)浓度范围内线性良好,相关系数为0.989 9~0.999 8,检出限(LOD)和定量限(LOQ)分别为0.01~0.15μg·L~(-1)和0.04~0.30μg·L~(-1)。3个不同浓度水平下,相对标准偏差(RSD)为2.31%~7.90%,5μg·L~(-1)浓度加标水平下,回收率在64.2%~110.3%,其中39种化合物的回收率80%。该方法简便快捷、目标物覆盖范围广、准确度和灵敏度高,适用于水体样品中初级芳香胺化合物的测定。  相似文献   
6.
土壤镉污染北方小麦生产阈值及产区划分初探   总被引:4,自引:3,他引:1  
本研究在从我国北方6个小麦产区的农田点对点收集了147对土壤和小麦样品的基础上,分析了土壤样品的pH、Cd含量、有机质(SOM)、阳离子交换量(CEC)、黏粒含量(Clay)及小麦籽粒的Cd含量,并通过线性相关与多元回归方法分析土壤性质与小麦籽粒Cd富集系数(BCF)之间的定量关系。同时,利用物种敏感度分布法对小麦宜产、限产和禁产区进行了划分,并以保护不同比例小麦安全生产反推出了各划分区的土壤Cd含量安全生产阈值。结果表明,研究区域的农田土壤和小麦生产均存在一定的安全风险,土壤Cd超标率95.1%,小麦籽粒Cd超标率47.6%。除CEC外,土壤pH、SOM和Clay含量均与BCF呈显著相关,相关系数分别为-0.18(P0.05)、0.14(P0.05)和-0.53(P0.01)。由土壤pH、SOM和Clay含量3个变量所建立的回归模型可解释54%的BCF变异。基于北方小麦产区土壤的性质特征,设定3种典型情景,即当土壤6.5≤pH7.5(SOM=15 g·kg~(-1),Clay=20%)、7.5≤pH8.5(SOM=30 g·kg~(-1),Clay=20%)和pH≥8.5(SOM=20 g·kg~(-1),Clay=20%)时,小麦宜产区土壤Cd阈值分别为0.33、0.41mg·kg~(-1)和0.64 mg·kg~(-1);禁产区阈值为1.93、2.51 mg·kg~(-1)和2.61 mg·kg~(-1);土壤Cd含量在宜产区阈值和禁产区阈值之间即可划分为小麦限产区。  相似文献   
7.
设施番茄和黄瓜田土壤中农药残留及其对蚯蚓的急性风险   总被引:3,自引:0,他引:3  
为评价设施蔬菜田土壤中残留农药对蚯蚓的急性危害风险,在山东省济阳县蔬菜基地,分别选择番茄和黄瓜连作种植区,于产中、产后及后茬产中三个时期采集耕层土壤,应用超高效液相色谱串联质谱法评估土样中噻虫嗪、噻虫胺、多菌灵、吡虫啉、阿维菌素、噻唑膦、甲基异柳磷、克百威和三羟基克百威的残留,并通过风险商值法评价其对蚯蚓的急性风险。结果表明:在39个设施番茄土壤中,噻虫嗪、噻虫胺和吡虫啉的检出率(检出浓度均值)均较高,分别为90%(0.107 mg·kg~(-1)dw)、79%(0.100 mg·kg~(-1)dw)和49%(0.233 mg·kg~(-1)dw);在30个设施黄瓜土壤中,噻虫嗪(63%,1.18 mg·kg~(-1)dw)和吡虫啉(57%,0.126 mg·kg~(-1)dw)的检出率和检出浓度均值均较高。在95%的番茄土样及97%的黄瓜土样中,目标农药对蚯蚓的急性风险商值小于1。在3例土壤中发现风险商值大于1,包括2例吡虫啉和1例噻虫胺,应用风险商值逆推,吡虫啉和噻虫胺对蚯蚓的土壤安全阈值分别为1.07和0.593 mg·kg~(-1)dw。研究表明,所调查区域设施蔬菜土壤中目标农药对蚯蚓的急性风险总体较低,对于高风险农药应监测其土壤残留浓度,确保低于安全阈值。  相似文献   
8.
基于DGT技术分析土壤重金属Cd、Ni的老化特征   总被引:2,自引:1,他引:1  
为明确重金属在土壤中的老化进程,锁定关键影响因子,采用梯度扩散薄膜(DGT)技术探究了外源添加Cd和Ni两种重金属在6种不同类型土壤中的老化特性,并探讨了影响重金属老化过程的关键因子。结果表明:Cd、Ni在不同土壤中的老化过程差异性明显,Ni比Cd更易老化。进入土壤中的重金属老化过程大致分为3个阶段,添加后20~30 d为快速老化阶段,30~60 d为缓慢老化期,除个别高污染土壤外,其余土壤均在60 d后基本达到平衡。数据分析结果表明,6种土壤中Cd、Ni的老化平衡浓度由初始浓度决定,初始浓度、CEC等因子为影响Cd、Ni老化速率的主控因素。DGT作为一种原位、非破坏性、不引入外源离子的监测技术,可以动态展示土壤外源添加重金属在老化过程中的活性变化,对评估土壤重金属污染风险具有重要参考价值。  相似文献   
9.
土壤中流失的磷进入水体容易引起富营养化污染。目前对于铁矿物胶体结合态磷在土壤孔隙介质中的稳定性和迁移能力的认识还存在不足。本研究采用吸附试验,考察水铁矿对磷的吸附特征以及pH、离子强度和胡敏酸对磷在液相、水铁矿胶体和水铁矿固体上分布的影响;通过DLVO理论,预测水铁矿胶体结合态磷的稳定性和迁移能力。结果表明,假二级动力学模型(R~2=0.964)更适合用于描述磷在水铁矿上的吸附过程,磷在水铁矿上的吸附受液膜扩散、内部扩散和化学吸附等过程控制。Freundlich模型(R2=0.970)对等温吸附的拟合效果好,说明水铁矿对磷的吸附为多层吸附过程。从Langmuir模型参数可知,水铁矿对磷的最大理论吸附量为22.55mg·g~(-1)。水铁矿对磷的吸附能力随pH的升高而降低,随离子强度的升高而升高。然而,低离子强度和高pH有利于反应体系中水铁矿胶体的释放。无论胡敏酸是否存在,在碱性且离子强度不高(1~10mmol·L~(-1))的条件下,有约5%~20%的磷会与水铁矿胶体结合,且这些磷-水铁矿胶体之间的静电斥力较大。根据DLVO理论计算可知,这些带负电荷的胶体之间稳定性较好,在土壤中有一定迁移能力。在实际农业活动中,磷肥的过量施用可能会使大量的磷酸根离子吸附在铁矿物上,促进土壤孔隙水中形成稳定的、带负电的铁矿物胶体,这种磷-铁矿物复合胶体的迁移很可能成为磷迁移的另一种形式。本研究结果可为胶体促进下磷淋失风险评估提供理论和数据支撑。  相似文献   
10.
为了研究土壤微生物对手性三唑类杀菌剂氟环唑的立体选择性响应,通过非靶向代谢组学和高通量测序联合技术探究了土壤代谢组和微生物群落对氟环唑外消旋体及对映体的响应机制。结果表明:氟环唑及其对映体处理4周后,土壤中氟环唑降解不显著,其残留能够引起土壤代谢组和土壤微生物群落组成的显著变化。土壤代谢组、细菌和真菌群落组成、PICRUSt基因功能预测的代谢途径均表现出由2R,3S-(+)-氟环唑驱动的立体选择性响应。PICRUSt基因预测表明,细菌中被显著影响的MetaCyc通路有10条,真菌中比对出22条。氟环唑外消旋体和(+)-对映体比(-)-对映体表现出对土壤微生物更显著的干扰作用(P<0.05)。氟环唑暴露引起了土壤环境中细菌和真菌群落、代谢、基因功能预测通路不同程度的立体选择性响应。鉴于土壤环境在农业生产中的重要性,土壤微生物组和代谢组的表征可以为暴露于手性三唑类农药顺式氟环唑及其对映体所带来的生态风险提供新的见解。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号