首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   545篇
  免费   27篇
  国内免费   1篇
林业   46篇
农学   35篇
基础科学   3篇
  132篇
综合类   26篇
农作物   56篇
水产渔业   73篇
畜牧兽医   137篇
园艺   9篇
植物保护   56篇
  2024年   1篇
  2023年   2篇
  2022年   16篇
  2021年   28篇
  2020年   35篇
  2019年   26篇
  2018年   30篇
  2017年   24篇
  2016年   31篇
  2015年   15篇
  2014年   16篇
  2013年   45篇
  2012年   44篇
  2011年   43篇
  2010年   26篇
  2009年   15篇
  2008年   23篇
  2007年   14篇
  2006年   19篇
  2005年   16篇
  2004年   8篇
  2003年   4篇
  2002年   4篇
  2001年   9篇
  2000年   3篇
  1999年   9篇
  1998年   5篇
  1997年   7篇
  1996年   3篇
  1995年   4篇
  1994年   3篇
  1993年   6篇
  1992年   2篇
  1991年   4篇
  1990年   7篇
  1989年   2篇
  1988年   4篇
  1987年   4篇
  1986年   4篇
  1985年   2篇
  1984年   6篇
  1980年   2篇
  1974年   2篇
排序方式: 共有573条查询结果,搜索用时 981 毫秒
81.
ABSTRACT

Fish oil was extracted and simultaneously collected into six fractions based on molecular weight and the chain length of triglycerides in terms of fatty acid constituents without splitting of the triglycerides, using supercritical carbon dioxide (SC-CO2) at optimized conditions of 40 MPa, 65°C, and a flow rate 3 mL min?1. In each type of fractionation, the first fraction (F1) was rich in saturated fatty acids (SFA; 52.57 to 61.26%), followed by monounsaturated fatty acids (MUFA; 22.17 to 23.22%) and polyunsaturated fatty acids (PUFA; (0.54 to 20.37%); the sixth fraction (F6) was rich in PUFA (48.93%), followed by MUFA (33.59%) and SFA (13.61%). It was obvious that short-chain fatty acids were extracted at an earlier fraction; therefore, the latter fractions were dominant in long-chain fatty acids, especially MUFA and PUFA. Thus, omega-3 fish oil (last three fractions) was successfully separated to be used as a value-added health product.  相似文献   
82.
Most research works on the production frontier in aquaculture focus on efficiency measurement using either Stochastic Production Frontier (SPF) or Data Envelopment Analysis (DEA). The studies on productivity growth in aquaculture were limited, perhaps due to lack of time-series data. Nevertheless, total factor productivity analysis (TFP) in fish farms has started gaining popularity in recent years. In addition, the majority of the efficiency studies have centered on technical efficiency analysis but substantial increases in the output levels can be fully realized through improving overall economic efficiency. Therefore, this review suggests that future research should estimate all three efficiency indices (i.e., technical, allocative and economic efficiencies).  相似文献   
83.
Insect reproduction may be affected by a number of factors including seasonal changes in larval or adult nutrition. The effect of season on the reproductive potential ofMonochamus galloprovincialis (Olivier) females reared inPinus sylvestris L. (Scots pine) logs was investigated by constructing fertility tables for each log that differed only in the season they were cut. Population parameters were compared among three seasonal cohorts. The intrinsic rate of increase and most of the associated population parameters of beetles that emerged from logs cut during spring were higher than for beetles emerged from summer and autumn logs. Slight differences were found between summer and autumn cohorts. We suggest that seasonal differences in the nutritional quality of logs caused differences inM. galloprovincialis survival and reproductive potential. http://www.phytoparasitica.org posting March 16, 2008.  相似文献   
84.
Bisphenol A (BPA) and reactive black 5 (RB5) dye are among the most persistent and non-biodegradable contaminants in water which require an urgent need for the development of effective removal method. The ubiquitous existence of both contaminants could interfere with the human health and aquatic environmental balance. Photocatalytic process as one of advanced oxidation processes (AOPs) has shown high performance for degradation of organic compounds to the harmless materials under sensible condition. Therefore, this study aims to develop a visible-light-driven photocatalyst that can efficiently degrade BPA and RB5 present in household water. N-doped TiO2 were successfully synthesized via simple and direct sol–gel method. The prepared TiO2 nanoparticles were characterized by field emission scanning microscope (FE-SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), and Brunauere Emmette Teller (BET) analysis. The incorporation of nitrogen in TiO2 lattice exhibited excellent optical responses to visible region as revealed by UV–Vis–NIR spectroscopy absorption capability at 400–600 nm. The photocatalytic activity of the N-doped TiO2 nanoparticles was measured by photocatalytic degradation of BPA and RB5 in an aqueous solution under visible-light irradiations. Degradation of BPA and RB5 was 91.3% and 89.1%, respectively after 360 min illumination. The degradation of BPA and RB5 by N-doped TiO2 was increased up to 89.8% and 88.4%, respectively under visible-light irradiation as compared to commercial TiO2 P25. This finding clearly shows that N-doped TiO2 exhibits excellent photocatalytic degradation of BPA and RB5 under visible irradiation, hence have a promising potential in removing various recalcitrant contaminants for water treatment to fulfill the public need to consume clean water.
Graphical Abstract ?
  相似文献   
85.
In this work, the effects of various operating parameters (pressure, pH, BPA concentration, and filtration time) toward bisphenol A (BPA) removal via ultrafiltration (UF) membrane system were investigated using response surface methodology (RSM). Historical data design of RSM was used to obtain the interaction between variables and response as well as optimizing the process. The analysis of variance (ANOVA) showed that the third-order polynomial model was significant in which pH and filtration time were identified as significant terms that influence BPA removal. The 3D response surface plots revealed the two-factor interaction between independent and dependent variables. The optimization process of the model predicted optimum conditions of 99.61% BPA removal at 1 bar, pH 6.7, 10 μg/L BPA concentration, and 10-min filtration time. The predicted optimum conditions for BPA removal were consistent with the obtained experimental values, indicating reliable application of historical data design RSM for modeling BPA removal in UF membrane system.  相似文献   
86.
Plants are sessile organisms that experience various abiotic stresses during their lifespan and try to adapt to these environmental stresses by manipulating their physiological, biochemical, cellular, and molecular mechanisms. Salinity is one of the important abiotic stress that affects the metabolism and physiology of plant cells that leads to serious damage to crops and productivity. We investigated the response of two contrasting (salt susceptible and tolerant) cultivars during saline stress by modulating its effect with the application of an important natural biostimulant panchagavya (PG). The results showed that the salinity stress greatly influenced and negatively affects the plant growth, biochemical attributes, and induces the expression of various genes in both cultivars. Furthermore, we assessed the effect of PG alone and by amending with NaCl to alleviate the saline stress which showed a significant enhancement of biochemical and physiological characteristics in both cultivars. Furthermore, we assessed the response of seven autophagy associated gene (ATG1, ATG3, ATG4, ATG6, ATG7, ATG8, and ATG9), BAX Inhibitor -1 (BI-1), Mitogen activated Protein Kinase–1 (MAPK-1), WRKY53, Catalase -1 (CAT-1), Superoxide Dismutase (SOD), and Glutathione Peroxidase (GPX) genes in rice that displayed the differential expression pattern during saline stress in both cultivars. We concluded that saline stress can be manipulated by the application of PG and positively regulate the physiological, biochemical, and gene expression response in salt-susceptible and -tolerant rice cultivars. Furthermore, the current study also suggested that salinity is a mutifactorial and multigenic response. Autophagy and programmed cell death regulated along with salinity and was helpful in adapting the tolerance against the stress condition.  相似文献   
87.
A glasshouse experiment was conducted to elucidate the influence of elemental sulfur (S) application rates (0, 0.5, 1.0, and 2.0 g S kg?1 soil) on the release and uptake of S at 0, 20, and 40 days after incubation. Results showed that there was a progressive upward trend in maize leaves, stem, and root S content with application of elemental S. However, maize production followed a nonlinear model. Plants grown in untreated soils suffer from S deficiency and addition of elemental S at a rate of 0.5 g S kg?1 soil alleviated S deficiency. The decrease in maize performance due to the highest S application rate was not related to S toxicity. The greatest leave, stem, and root productions were obtained at S concentrations of 0.41, 0.58, and 0.2%, respectively. Overall, application of elemental S at a rate of 0.5 g S kg?1 soil is recommended for maize performance improvement.  相似文献   
88.
89.
Phytoremediation using vetiver grass (Vetiveria zizanioides) has been regarded as an effective technique for removing contaminants in polluted water. This study was conducted to assess the removal efficiency of heavy metals (Cu, Fe, Mn, Pb, Zn) using vetiver grass (VG) at different root lengths and densities and to determine metals uptake rate by plant parts (root and shoot) between treatments (low and high concentration). Removal efficiency for heavy metals in water by VG is ranked in the order of Fe>Pb>Cu>Mn>Zn. Results showed that VG was effective in removing all the heavy metals, but removals greatly depend on root length, plant density and metal concentration. Longer root length and higher density showed greater removals of heavy metals due to increased surface area for metal absorption by plant roots. Results also demonstrated significant difference of heavy metals uptake in plant parts at different concentrations indicating that root has high tolerance towards elevated concentration of heavy metals. However, the effects were less significant in plant shoot suggesting that metals uptake were generally higher in root than in shoot. The findings have shown potential of VG in phytoremediation for heavy metals removal in water thus providing significant implication for treatment of metal-contaminated water.  相似文献   
90.
An automated wood texture recognition system of 48 tropical wood species is presented. For each wood species, 100 macroscopic texture images are captured from different timber logs where 70 images are used for training while 30 images are used for testing. In this work, a fuzzy pre-classifier is used to complement a set of support vector machines (SVM) to manage the large wood database and classify the wood species efficiently. Given a test image, a set of texture pore features is extracted from the image and used as inputs to a fuzzy pre-classifier which assigns it to one of the four broad categories. Then, another set of texture features is extracted from the image and used with the SVM dedicated to the selected category to further classify the test image to a particular wood species. The advantage of dividing the database into four smaller databases is that when a new wood species is added into the system, only the SVM classifier of one of the four databases needs to be retrained instead of those of the entire database. This shortens the training time and emulates the experts’ reasoning when expanding the wood database. The results show that the proposed model is more robust as the size of wood database is increased.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号