首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 487 毫秒
1.
Articular cartilage is a critical joint tissue and its evaluation remains a diagnostic challenge in horses. Coupled with a poor capacity for healing, early degenerative changes in articular cartilage are difficult to characterise using routine diagnostic imaging evaluations. Both computed tomography (CT) and magnetic resonance imaging (MRI) provide volumetric joint assessment and highlight morphological and quantitative properties of articular cartilage, improving assessment of this essential tissue. While the use of CT and MRI for joint evaluation is not new, there still remains a shortage of literature and scientific studies on the ability of these methods to evaluate articular cartilage in the horse. This review article summarises current CT and MRI techniques capable of characterising equine articular cartilage, highlights recent advances in these techniques and discusses the numerous methods studied in human subjects that have been minimally investigated in horses. Imaging techniques are presented in terms of their capabilities of offering morphological and quantitative evaluation along with a discussion of their benefits and limitations. Finally, it summarises the current state‐of‐the‐art approaches and identifies unmet clinical imaging needs to propel the advancement of articular cartilage and joint imaging in the horse.  相似文献   

2.
Reasons for performing study: To date, few reports exist comparing magnetic resonance imaging (MRI) and computed tomography (CT) for imaging of the equine distal limb, yet clinicians are required to decide which modality to use regularly. Objectives: To report and compare anatomic visualisation scores obtained for CT, contrast enhanced CT (CECT) and standing low‐field MRI (LFMRI) in the equine foot. Hypothesis: Anatomic visualisation score discrepancies would exist between CT, CECT and LFMRI. Methods: Images of 22 lame horses (31 limbs) undergoing both CT and LFMRI of the foot were reviewed. When available, CECT images were reviewed. The deep digital flexor tendon (DDFT) was categorised into proximal to distal levels (A–D), structures were assigned visualisation scores (Grades 0–3) and technique comparisons were made using the paired marginal homogeneity test. Results: Computed tomography and LFMRI had similar visibility scores for the navicular bone, middle phalanx, DDFT‐B, collateral ligaments of the distal interphalangeal joint and collateral sesamoidean ligament of the navicular bone. The proximal and distal phalanx had lower visibility scores with LFMRI. The distal DDFT (C–D), distal sesamoidean impar ligament and synovial structures had higher scores with LFMRI. Contrast enhanced CT lowered DDFT and collateral sesamoidean ligament scores and raised distal interphalangeal synovium CT visualisation scores. Conclusions and potential relevance: Visualisation scores differ depending on imaging technique and anatomic structure of interest. This information increases our understanding of the limitations of CT, CECT and LFMRI to visualise anatomy in clinical cases.  相似文献   

3.
Reasons for performing study: The use of computer tomography (CT) and contrast‐enhanced CT (CCT) to image the head is common. However, the validity of CT as a neurodiagnostic indicator of intracranial diseases in horses is unknown. Objective: To define the validity of CT and CCT in horses with suspected intracranial disorders. Methods: The validity of CT imaging was estimated by comparing clinical, clinicopathological and histopathological findings to CT findings in 15 horses presented for intracranial disorders, for which pre‐ and post contrast CT images and post mortem examination of the brain and skull were reviewed. Post mortem examination (gross and histopathological examination) was considered as the gold standard; and sensitivity, specificity, predictive values, likelihood ratios, and pre‐ and post test probabilities were calculated. Results: All horses had abnormal neurological examinations on admission. Computer tomography imaging identified intracranial lesions in 8 horses, and included masses (oligodendroglioma, adenocarcinoma and cholesterinic granulomas), acute haemorrhage and skull fractures. Computer tomography imaging failed to identify intracranial lesions in 6 cases, which included meningitis, meningoencephalitis and nonacute haemorrhage. Lesions not recognised by CT were also not evident on gross examination but were identified by histopathological examination of the brain. Post mortem examination of the brain and skull was unremarkable in one horse, for which cranial CT imaging was normal (specificity, 100%). Therefore, the odds of having an intracranial lesion after an abnormal CT were very high. In contrast, there was a moderate sensitivity (57.1%, 95% confidence interval: 29.6–81.2). Conclusions and potential relevance: CT was an excellent neurodiagnostic tool in identifying skull fractures, intracranial space‐occupying lesions (e.g. neoplasia) and acute haemorrhage and allows to rule in intracranial disorders. However, CT showed limited sensitivity in identifying inflammatory disorders and small parenchymal lesions in the equine brain, which was not further detectable after contrast administration.  相似文献   

4.
Although horses are affected by cranial nerve disease, our understanding of these structures' imaging anatomy is limited, and the optimal modality for imaging of each of these nerves is unclear. The aim of this study was to describe the imaging appearance of the equine cranial nerves on high‐resolution 1.5T magnetic resonance imaging (MRI) and computed tomography (CT) scans of a cadaver head, and with these as standards, examine the utility of MRI and CT performed in clinical cases. High‐resolution MRI and CT images were prospectively acquired of the head of a normal Thoroughbred gelding following euthanasia. Ten clinical cases undergoing high‐field MRI under general anaesthesia and 10 clinical cases undergoing CT in the standing horse under sedation were retrospectively evaluated by three reviewers to assess cranial nerve visibility. On high‐resolution, thin‐slice, MRI scans of the normal cadaver head, each of the 12 cranial nerves and their topographic location could be appreciated. On high‐resolution cadaver CT, cranial nerves II, V and VII were clearly visible, but others were less easily identified; osseous structures were clearly visualised. Clinical MRI and CT allowed for variable visualisation of the cranial nerves, dependent on the sequence and the orientation of scan planes. High‐field MRI allowed excellent visualisation of equine cranial nerves, whereas CT allowed for more detailed visualisation of the osseous canals and foramina. In live horses, the ability to identify all 12 nerves is challenging with either MRI or CT; however, high‐field MRI enables better visualisation of the nerve bundles than CT.  相似文献   

5.
Vascular alterations play important roles in many orthopedic diseases such as osteoarthritis, tendonitis, and synovitis in both human and equine athletes. Understanding these alterations could enhance diagnosis, prognosis, and treatment. Contrast‐enhanced ultrasound (CEUS) could be a valuable method for evaluation of blood flow and perfusion of these processes in the equine distal limb, however no reports were found describing feasibility or safety of the technique. The goal of this prospective, experimental study was to describe the feasibility and safety of distal limb CEUS in a sample of six horses. For each horse, CEUS of the distal limb was performed after intravenous injections of 5 and 10 ml, as well as intra‐arterial injections of 0.5 and 1 ml contrast medium. Vital parameters were monitored and CEUS images were assessed qualitatively and quantitatively for degree of contrast enhancement. None of the horses had clinically significant changes in their vital parameters after contrast medium injection. One horse had a transient increase in respiratory rate, and several horses had mild increases of systolic blood pressure of short duration after intravenous, but not after intra‐arterial injections. Intra‐arterial injection was possible in all horses and resulted in significantly improved contrast enhancement both quantitatively (P = 0.027) and qualitatively (P = 0.019). Findings from this study indicated that CEUS is a feasible and safe diagnostic test for evaluation of the equine distal limb. Future studies are needed to assess the clinical utility of this test for horses with musculoskeletal diseases.  相似文献   

6.
Access to volumetric imaging modalities, such as magnetic resonance imaging (MRI) and computed tomography (CT), has increased over the past decade and has revolutionised the way clinicians evaluate equine anatomy. More recent advancements have resulted in the development of multiple commercially available cone-beam CT (CBCT) scanners for equine use. CBCT scanners modify the traditional fan-shaped beam of ionising radiation into a three-dimensional pyramidal- or cone-shaped beam of radiation. This modification enables the scanner to acquire sufficient data to create diagnostic images of a region of interest after a single rotation of the gantry. The rapid acquisition of data and divergent X-ray beam causes some artifacts to be more prominent on CBCT images—as well as the unique cone-beam artifact—resulting in decreased contrast resolution. While the use of CT for evaluation of the equine musculoskeletal anatomy is not new, there is a paucity of literature and scientific studies on the capabilities of CBCT for equine imaging. CBCT units do not require a specialised table for imaging and in some cases are portable for imaging in the standing or anaesthetised patient. This review article summarises the basic physics of CT technology, including how CBCT imaging differs, and provides objective information about the strengths and limitations of this modality. Finally, potential future applications and techniques for imaging with CT which will need to be explored in order to fully consider the capabilities of CT imaging in the horse are discussed.  相似文献   

7.
Traumatic and infectious diseases of the eye and orbit can occur in horses. For diagnosis and monitoring of such diseases, medical imaging is useful including computed tomography (CT) and magnetic resonance imaging (MRI). The aim of the current study was to describe CT and MRI anatomy of the equine orbit and ocular globe. The heads from four adult horses were scanned with a 6‐slice Emotion 6 CT (Siemens, Erlangen), and a 3.0 Tesla Siemens Verio 6 MRI using T1 and T2‐weighted sequences. To validate CT and MR reference images, these were compared with anatomical models and gross anatomical sections. The bony limits of the orbital cavity, the relationship of the orbit with sinuses and foramina of the skull were well identified by CT. MRI was useful to observe soft tissues and was able to identify adnexae of the ocular globe (eyelids, periorbital fat, extraocular muscles, lacrymal and tarsal glands). Although MRI was able to identify all components of the eye (including the posterior chamber), it could not differentiate sclera from choroid and retina. The only nerve identified was the optic nerve. Vessels were not seen in this series of cadaver heads. This study showed that CT and MRI are useful techniques to image the equine orbit and eye that can have clinical applications.  相似文献   

8.
Reasons for performing study: Marginal osteophytes represent a well known component of osteoarthritis in man and animals. Conversely, central subchondral osteophytes (COs), which are commonly present in human knees with osteoarthritis, have not been reported in horses. Objectives: To describe and compare computed radiography (CR), single‐slice computed tomography (CT), 1.5 Tesla magnetic resonance imaging (MRI), and histological features of COs in equine metacarpophalangeal joints with macroscopic evidence of naturally‐occurring osteoarthritis. Methods: MRI sequences (sagittal spoiled gradient recalled echo [SPGR] with fat saturation, sagittal T2‐weighted fast spin echo with fat saturation [T2‐FS], dorsal and transverse T1‐weighted gradient‐recalled echo [GRE], and sagittal T2*‐weighted gradient echo with fast imaging employing steady state acquisition [FIESTA]), as well as transverse and reformatted sagittal CT, and 4 computed radiographic (CR) views of 20 paired metacarpophalangeal joints were acquired ex vivo. Following macroscopic evaluation, samples were harvested in predetermined sites of the metacarpal condyle for subsequent histology. The prevalence and detection level of COs was determined for each imaging modality. Results: Abnormalities consistent with COs were clearly depicted on MRI, using the SPGR sequence, in 7/20 (35%) joints. They were identified as a focal hypointense protuberance from the subchondral plate into the cartilage, at the palmarodistal aspect (n = 7) and/or at the very dorsal aspect (n = 2) of the metacarpal condyle. COs were visible but less obvious in 5 of the 7 joints using FIESTA and reformatted sagittal CT, and were not identifiable on T2‐FS, T1‐GRE or CR. Microscopically, they consisted of dense bone protruding into the calcified cartilage and disrupting the tidemarks, and they were consistently associated with overlying cartilage defects. Conclusions: Subchondral osteophytes are a feature of osteoarthritis of equine metacarpophalangeal joints and they may be diagnosed using 1.5 Tesla MRI and CT. Potential relevance: Central subchondral osteophytes on MRI represent indirect evidence of cartilage damage in horses.  相似文献   

9.
While articular cartilage changes are considered to be one of the initial events in the pathological cascade leading to osteoarthritis, these changes remain difficult to detect using conventional diagnostic imaging modalities such as plain radiography. The aim of this prospective, experimental, methods comparison study was to compare the sensitivity of magnetic resonance imaging (MRI), magnetic resonance arthrography, computed tomography (CT), and CT arthrography in the detection of artificially induced articular cartilage defects in the equine carpal joints. Defects were created in the antebrachiocarpal and middle carpal joint using curettage by a board‐certified equine surgeon. Normal articular cartilage thickness varied from a maximum of 1.22 mm at the level of the distal aspect of the radius to a minimum of 0.17 mm in the proximal articular surface of the third carpal bone. Regarding cartilaginous defect measurements the remaining cartilaginous bed range from a maximum of 0.776 mm in the partial thickness defects, and 0 mm (defect reaches the subchondral bone) when total thickness defect were made. Computed tomography and magnetic resonance imaging were performed followed by CT arthrography and magnetic resonance arthrography after antebrachiocarpal and middle carpal intraarticular contrast administration. All images were reviewed by two board‐certified veterinary radiologists, both of whom were blinded to the location, presence of, and thickness of the cartilage defects. A total number of 72 lesions in nine limbs were created. Mean sensitivity for localizing cartilage defects varied between imaging modalities with CT arthrography showing the best sensitivity (69.9%), followed by magnetic resonance arthrography (53.5%), MRI (33.3%), and CT (18.1%) respectively. The addition of contrast arthrography in both magnetic resonance and CT improved the rate of cartilage lesion detection although no statistical significance was found. Computed tomographic arthrography displayed the best sensitivity for detecting articular cartilage defects in the equine antebrachiocarpal and middle‐carpal joints, compared to magnetic resonance arthrography, MRI, and CT.  相似文献   

10.
Morphology of the equine cervical intervertebral disc is different from that in humans and small companion animals and published imaging data are scarcely available. The objectives of this exploratory, methods comparison study were (a) to describe MRI features of macroscopically nondegenerated and degenerated intervertebral discs (b) to test associations between spinal location and macroscopic degeneration or MRI‐detected annular protrusion and between MRI‐detected annular protrusion and macroscopic degeneration, and (c) to define MRI sequences for characterizing equine cervical intervertebral disc degeneration. Ex vivo MRI of intervertebral discs was performed in 11 horses with clinical signs related to the cervical region prior to macroscopic assessment. Mixed‐effect logistic regression modeling included spinal location, MRI‐detected annular protrusion, and presence of macroscopic degeneration with “horse” as random effect. Odds ratio and 95% confidence interval were determined. Reduced signal intensity in proton density turbo SE represented intervertebral disc degeneration. Signal voids due to presence of gas and/or hemorrhage were seen in gradient echo sequences. Presence of macroscopic intervertebral disc degeneration was significantly associated with spinal location with odds being higher in the caudal (C5 to T1) versus cranial (C2 to C5) part of the cervical vertebral column. Intervertebral discs with MRI‐detected annular protrusion grades 2‐4 did have higher odds than with grade 1 to have macroscopic degeneration. It was concluded that MRI findings corresponded well with gross macroscopic data. Magnetic resonance imaging of the equine cervical intervertebral disc seems to be a promising technique, but its potential clinical value for live horses needs to be explored further in a larger and more diverse population of horses.  相似文献   

11.
Minimizing the volume of contrast administered for contrast‐enhanced computed tomography (CT) of the equine head is desirable for reducing costs and risks of adverse reactions, however evidence‐based studies on the effects of varying volumes on image quality are currently lacking. The objective of the current study was to determine whether low‐volume intraarterial administration of contrast medium would result in an equivalent image quality and tissue attenuation vs. high‐volume intravenous bolus administration. A prospective cross‐over experimental design was used in a sample of six horses. After anesthetic induction, the right carotid artery was exposed surgically and catheterized. Four CT scans of the cranium were performed for each horse: baseline, immediately following intraarterial contrast injection, five‐min postinjection (return to baseline) and a final scan after intravenous contrast administration. Soft tissue attenuation in predetermined regions of interest (ROI); and length, width, and height measurements of the pituitary gland were recorded at each time point. Horses were euthanized and measurements of the pituitary gland were repeated postmortem. No adverse reactions to contrast administration were observed. Intraarterial and intravenous administration of contrast medium resulted in significantly greater soft tissue enhancement of some brain ROI's and the pituitary gland vs. baseline values. Pituitary gland measurements made on postcontrast CT images did not differ from those obtained during postmortem examination. Findings indicated that low‐dose intraarterial administration of contrast material in the equine head resulted in comparable soft tissue enhancement vs. high volume intravenous administration.  相似文献   

12.
Reasons for performing study: No previous study compares computed tomography (CT), contrast‐enhanced computed tomography (CECT) and standing low‐field magnetic resonance imaging (LFMRI) to detect lesions in horses with lameness localised to the foot. This study will help clinicians understand the limitations of these techniques. Objectives: To determine if CT, CECT and LFMRI would identify lesions within the distal limb and document discrepancies with lesion distribution and lesion classification. Methods: Lesions in specific structures identified on CT and MR images of feet (31 limbs) from the same horse were reviewed and compared. Distributions of lesions were compared using a Chi‐squared test and techniques analysed using the paired marginal homogeneity test for concordance. Results: Lesions of the deep digital flexor tendon (DDFT) were most common and CT/CECT identified more lesions than LFMRI. Deep digital flexor tendon lesions seen on LFMRI only were frequently distal to the proximal extent of the distal sesamoid and DDFT lesions seen on CT/CECT only were frequently proximal to the distal sesamoid. Lesions identified on LFMRI only were core (23.3%) or splits (43.3%), whereas lesions identified only on CT were abrasions (29.8%), core (15.8%), enlargement (15.8%) or mineralisation (12.3%). Contrast‐enhanced CT improved lesion identification at the DDFT insertion compared to CT and resulted in distal sesamoidean impar ligament and collateral sesamoidean ligament vascular enhancement in 75% of cases. Low‐field MRI and CT/CECT failed to identify soft tissue mineralisation and bone oedema, respectively. Conclusions and potential relevance: Multiple lesions are detected with CT, CECT and LFMRI but there is variability in lesion detection and classification. LFMRI centred only on the podotrochlear apparatus may fail to identify lesions of the pastern or soft tissue mineralisation. Computed tomography may fail to identify DDFT lesions distal to the proximal border of the distal sesamoid.  相似文献   

13.
Reasons for performing study: Noncontrast magnetic resonance angiography (MRA) is widely used in human and small animal medicine. However, this technique has not yet been described in the horse, and compared to other angiographic techniques MRA could be more cost efficient and potentially safer. Objectives: The aim of this study was to provide a comprehensive anatomical reference of the normal equine head vasculature using a noncontrast MRA technique, on both low‐ and high‐field MRI. Methods: Five healthy adult horses were examined, 4 with a low‐field magnet (0.23T) and the remaining one with a high‐field magnet (1.5T). The magnetic resonance angiography sequence used was TOF (time‐of‐flight) 2D‐MRA and CT images of a vascular corrosion cast were subsequently used as anatomical references. Results: The MRA imaging protocol provided good visualisation of all major intra‐ and extracranial vessels down to a size of approximately 2 mm in diameter on both low‐ and high‐field systems. This resulted in identification of vessels to the order of 3rd–4th branches of ramification. The visibility of the arteries was higher than of the veins, which showed lower signal intensity. Overall, MRA obtained with the high‐field protocol provided better visualisation of the arteries, showing all the small arterial branches with a superior resolution. Conclusions: The use of a specific vascular sequence such as TOF 2D‐MRA allows good visualisation of the equine head vasculature and eliminates the need for contrast media for MRA. Potential relevance: Magnetic resonance angiography allows for visualisation of the vasculature of the equine head. Vessel morphology, symmetry and size can be evaluated and this may possibly play a role in preoperative planning or characterisation of diseases of the head, such as neoplasia or guttural pouch mycosis.  相似文献   

14.
OBJECTIVE: To map the equine pelvis using ultrasonography, validated by use of computed tomography (CT), magnetic resonance imaging (MRI), and measurements of frozen cadaver slices. ANIMALS: 6 ponies and 6 horses. PROCEDURE: Ultrasonographic examination of the pelvis was performed on 6 clinically normal ponies. Measurements were obtained for imaged structures. Computed tomography, MRI, and measurements of frozen sections were performed after death and used to verify measurements. Linear regression determined the degree of correlation between measurements obtained ultrasonographically and the other modalities. Six clinically normal horses were then examined by use of ultrasonography. For each structure measured mean, SD, and range were calculated. RESULTS: Data obtained from ponies revealed high correlations between ultrasonographic findings and those of CT, MRI, and frozen section measurements (r2 = 0.97, r2 = 0.99, and r2 = 0.99, respectively). Differences between structures measured on each side of the pelvis were not significant. Variation in size of structures was not associated with weight of horses. A correlation was not found between weight of horses and ponies and size of structure. CONCLUSIONS AND CLINICAL RELEVANCE: Ultrasonography can be used to accurately measure and evaluate the musculoskeletal structures of the pelvis of horses. The use of CT, MRI, and measurements of frozen sections provided a means of validating the ultrasonographic measurements. Reference range values determined in our study can be used to evaluate horses with suspected pelvic disease.  相似文献   

15.
The equine head is an anatomically highly complex area affected by a range of disorders, making the diagnosis of head conditions challenging. Imaging techniques play a crucial role in the diagnostic work-up of head disorders. Tomographic imaging methods, such as computed tomography (CT) and magnetic resonance imaging (MRI) are particularly useful in avoiding problems associated with superimposition of multiple structures in this highly complex region. Both techniques are becoming more widely available in equine medicine. However, the choice between CT and MRI for imaging the equine head is not always straightforward. Each modality has advantages and disadvantages in terms of practicality, costs and diagnostic value for particular problems. The aim of this review is to describe the application of CT and MRI for imaging the equine head and to provide a practical guide for their use in different anatomical structures and clinical indications. This should allow the equine practitioner to make an informed decision on which modality to choose.  相似文献   

16.
Osteoarthritis of the metacarpophalangeal joint is common cause of lameness in equine athletes, and is hallmarked by articular cartilage damage. An accurate, noninvasive method for measuring cartilage thickness would be beneficial to screen for cartilage injury and allow for prompt initiation of interventional therapy. The objective of this methods comparison study was to compare computed tomographic arthrography (CTA), magnetic resonance imaging (MRI), and magnetic resonance arthrography (MRA) measurements of articular cartilage thickness with gross measurements in the metacarpophalangeal joint of Thoroughbred horses. Fourteen cadaveric, equine thoracic limbs were included. Limbs were excluded from the study if pathology of the metacarpophalangeal articular cartilage was observed with any imaging modality. Articular cartilage thickness was measured in nine regions of the third metacarpal bone and proximal phalanx on sagittal plane MRI sequences. After intra‐articular contrast administration, the measurements were repeated on sagittal plane MRA and sagittal CTA reformations. In an effort to increase cartilage conspicuity, the volume of intra‐articular contrast was increased from 14.5 ml, to maximal distention for the second set of seven limbs. Mean and standard deviation values were calculated, and linear regression analysis was used to determine correlations between gross and imaging measurements of cartilage thickness. This study failed to identify one imaging test that consistently yielded measurements correlating with gross cartilage thickness. Even with the use of intra‐articular contrast, cartilage surfaces were difficult to differentiate in regions where the cartilage surfaces of the proximal phalanx and third metacarpal bone were in close contact with each other.  相似文献   

17.
For accurate interpretation of magnetic resonance (MR) images of the equine brain, knowledge of the normal cross‐sectional anatomy of the brain and associated structures (such as the cranial nerves) is essential. The purpose of this prospective cadaver study was to describe and compare MRI and computed tomography (CT) anatomy of cranial nerves' origins and associated skull foramina in a sample of five horses. All horses were presented for euthanasia for reasons unrelated to the head. Heads were collected posteuthanasia and T2‐weighted MR images were obtained in the transverse, sagittal, and dorsal planes. Thin‐slice MR sequences were also acquired using transverse 3D‐CISS sequences that allowed mutliplanar reformatting. Transverse thin‐slice CT images were acquired and multiplanar reformatting was used to create comparative images. Magnetic resonance imaging consistently allowed visualization of cranial nerves II, V, VII, VIII, and XII in all horses. The cranial nerves III, IV, and VI were identifiable as a group despite difficulties in identification of individual nerves. The group of cranial nerves IX, X, and XI were identified in 4/5 horses although the region where they exited the skull was identified in all cases. The course of nerves II and V could be followed on several slices and the main divisions of cranial nerve V could be distinguished in all cases. In conclusion, CT allowed clear visualization of the skull foramina and occasionally the nerves themselves, facilitating identification of the nerves for comparison with MRI images.  相似文献   

18.
Objective Conventional imaging modalities can diagnose the source of foot pain in most cases, but have limitations in some horses, which can be overcome by using magnetic resonance imaging (MRI). However, there are no reports of the MRI appearance and prevalence of foot lesions of a large series of horses with chronic foot lameness. Methods In the present study, 79 horses with unilateral or bilateral forelimb lameness because of chronic foot pain underwent standing low‐field MRI to make a definitive diagnosis. Results Of the 79 horses, 74 (94%) had alterations in >1 structure in the lame or lamest foot. Navicular bone lesions occurred most frequently (78%) followed by navicular bursitis (57%), deep digital flexor tendonopathies (54%) and collateral desmopathy of the distal interphalangeal joint (39%). Effusion of the distal interphalangeal joint was also a frequent finding (53%). Conclusion Low‐field MRI in a standing patient can detect many lesions of the equine foot associated with chronic lameness without the need for general anaesthesia.  相似文献   

19.
Mesenchymal stem cells (MSCs) are widely used for treatment of musculoskeletal diseases in horses, but there is ongoing debate regarding the relative safety and efficacy of allogeneic MSCs, compared with autologous equine MSCs. This review summarises the currently available published data regarding the therapeutic use of autologous and allogeneic MSCs in horses. Arguments that have been advanced against the use of allogeneic MSCs include higher risk of immunological reactions and shorter cell survival times following injection. Arguments favouring the use of allogeneic MSCs include the ability to bank cells and reduce the time to treatment, to collect MSCs from younger donor animals and the ability to manipulate banked cells prior to administration. In vitro studies and a limited set of experimental in vivo studies have indicated that adverse immunological reactions may occur when allogeneic MSCs are administered to horses. However, newer studies lack evidence of inflammatory reactions or adverse clinical responses when allogeneic MSCs are administered and compared with autologous MSCs. Thus, while the relative merits of allogeneic vs autologous MSCs for treatment of musculoskeletal injuries in horses have not been fully established, accumulating evidence from studies in horses suggests that allogeneic MSCs maybe a safe alternative to autologous MSCs. Large, properly designed, randomised trials in addition to careful immunological evaluation of short-term and long-term, local and systemic immune responses are needed to more fully resolve the issue.  相似文献   

20.
Pre‐surgical investigation of digital flexor tendon sheath pathology remains challenging with current standard imaging techniques. The aim of this prospective, anatomical, pilot study was to describe the anatomy of the equine hind limb digital flexor tendon sheath using a combination of computed tomography (CT) and computed tomographic contrast tenography in clinically normal cadaver limbs. Ten pairs of hind limbs with no external abnormalities were examined from the level of the tarsometatarsal joint distally. Limbs initially underwent non‐contrast CT examination using 120 kVp, 300 mAs, and 1.5 mm slice thickness. Sixty millilitres of ioversol iodinated contrast media and saline (final concentration 100 mg/ml) were injected using a basilar sesamoidean approach. The computed tomographic contrast tenography examination was then repeated, before dissection of the specimens to compare gross and imaging findings. The combined CT and computed tomographic contrast tenography examinations provided excellent anatomical detail of intra‐thecal structures. The borders of the superficial and deep digital flexor tendons, and the manica flexoria were consistently identifiable in all limbs. Detailed anatomy including that of the mesotenons, two of which are previously undescribed, and the plantar annular ligament were also consistently identifiable. Dissection of all 10 pairs of limbs revealed there to be no pathology, in accordance with the imaging findings. In conclusion, the combination of CT and computed tomographic contrast tenography may be useful adjunctive diagnostic techniques to define digital flexor tendon sheath pathology prior to surgical exploration in horses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号