首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Osteoarthritis of the metacarpophalangeal joint is common cause of lameness in equine athletes, and is hallmarked by articular cartilage damage. An accurate, noninvasive method for measuring cartilage thickness would be beneficial to screen for cartilage injury and allow for prompt initiation of interventional therapy. The objective of this methods comparison study was to compare computed tomographic arthrography (CTA), magnetic resonance imaging (MRI), and magnetic resonance arthrography (MRA) measurements of articular cartilage thickness with gross measurements in the metacarpophalangeal joint of Thoroughbred horses. Fourteen cadaveric, equine thoracic limbs were included. Limbs were excluded from the study if pathology of the metacarpophalangeal articular cartilage was observed with any imaging modality. Articular cartilage thickness was measured in nine regions of the third metacarpal bone and proximal phalanx on sagittal plane MRI sequences. After intra‐articular contrast administration, the measurements were repeated on sagittal plane MRA and sagittal CTA reformations. In an effort to increase cartilage conspicuity, the volume of intra‐articular contrast was increased from 14.5 ml, to maximal distention for the second set of seven limbs. Mean and standard deviation values were calculated, and linear regression analysis was used to determine correlations between gross and imaging measurements of cartilage thickness. This study failed to identify one imaging test that consistently yielded measurements correlating with gross cartilage thickness. Even with the use of intra‐articular contrast, cartilage surfaces were difficult to differentiate in regions where the cartilage surfaces of the proximal phalanx and third metacarpal bone were in close contact with each other.  相似文献   

2.
Injuries of the intercarpal ligaments are an important cause of lameness in performance horses. The purpose of this prospective cadaver study was to determine whether computed tomography (CT) arthrography would be a feasible method for visualizing and characterizing intercarpal ligaments in the horse. One cadaver limb from each of eight nonlame horses was collected immediately after euthanasia. For each limb, overlapping 2.0 mm CT images were acquired before and after injection of iodinated contrast medium into the antebrachiocarpal joint, middle carpal joint, and carpal sheath. Spin echo magnetic resonance imaging (MRI) sequences were acquired in three planes using a 1.5 Tesla MRI scanner in three limbs. Following MRI, colored resin was injected into the synovial structures of these three limbs, limbs were frozen, and anatomic sections were obtained in three planes. Findings from CT arthrograms were compared to findings from precontrast CT, MRI, anatomic slices, and arthroscopy. Medial and lateral palmar intercarpal ligaments, radiocarpal and transverse intercarpal ligaments, and palmar carpal ligament were visible in CT arthrograms of all limbs. The proximal and distal entheses of all ligaments were readily identifiable. Findings indicated that CT arthrography is feasible for visualizing intercarpal ligaments and may be a useful adjunct imaging technique for diagnosing lameness due to suspected carpal ligament injury in horses.  相似文献   

3.
OBJECTIVE: To validate use of magnetic resonance images (MRIs) for measurement of equine articular cartilage and subchondral bone thickness by comparison with measurements in histologic specimens. SAMPLE POPULATION: 32 cadaveric carpal joints from 16 horses. PROCEDURE: Magnetic resonance imaging was performed by use of 3-dimensional fast spoiled gradient echo (SPGR) and T2* 3-dimensional fast gradient echo (GRE) pulse sequences with and without fat saturation. Standard sites on the medial and lateral facets of the intermediate, radial, and third carpal bones were used for subchondral bone and articular cartilage thickness measurements. Digital image analysis software was used for MRI measurements 10 mm from the dorsal extent and perpendicular to the articular surface. Histomorphometric measurements of hyaline, calcified cartilage, and subchondral bone thickness were obtained at selected sites. Comparisons between histomorphometric and MRI measurements and between magnetic resonance pulse sequences were evaluated. RESULTS: There were significant correlations between GRE and SPGR and SPGR and histologic measurements of articular cartilage, with no significant difference between measurements and good agreement. When calcified cartilage was excluded from the histologic measurement, MRI measurements were significantly greater than histologic measurements. For subchondral bone thickness, there was significant correlation between GRE and SPGR but GRE was significantly greater than SPGR measurements. Histomorphometric and MRI measurements were strongly correlated and not significantly different. CONCLUSIONS AND CLINICAL RELEVANCE: Magnetic resonance imaging provides a good representation of cartilage and subchondral bone thickness, supporting its use in the study and clinical diagnosis of osteochondral structure and alteration.  相似文献   

4.
Articular cartilage defects are prevalent in metacarpo/metatarsophalangeal (MCP/MTP) joints of horses. The aim of this study was to determine and compare the sensitivity and specificity of 3-Tesla magnetic resonance imaging (3-T MRI) and computed tomography arthrography (CTA) to identify structural cartilage defects in the equine MCP/MTP joint. Forty distal cadaver limbs were imaged by CTA (after injection of contrast medium) and by 3-T MRI using specific sequences, namely, dual-echo in the steady-state (DESS), and sampling perfection with application-optimised contrast using different flip-angle evolutions (SPACE). Gross anatomy was used as the gold standard to evaluate sensitivity and specificity of both imaging techniques.CTA sensitivity and specificity were 0.82 and 0.96, respectively, and were significantly higher than those of MRI (0.41 and 0.93, respectively) in detecting overall cartilage defects (no defect vs. defect). The intra and inter-rater agreements were 0.96 and 0.92, respectively, and 0.82 and 0.88, respectively, for CT and MRI. The positive predictive value for MRI was low (0.57). CTA was considered a valuable tool for assessing cartilage defects in the MCP/MTP joint due to its short acquisition time, its specificity and sensitivity, and it was also more accurate than MRI. However, MRI permits assessment of soft tissues and subchondral bone and is a useful technique for joint evaluation, although clinicians should be aware of the limitations of this diagnostic technique, including reduced accuracy.  相似文献   

5.
The equine carpal joint was used to evaluate arthroscopic diagnosis of lesions created in joints obtained from horses euthanized for reasons other than lameness. Full-thickness articular defects were made in 13 sites within the antebrachiocarpal joint and middle carpal joint approximating those found in diseased carpal joints. Arthroscopic evaluation of the lesions included location, depth, and size of the defects. The joints were subsequently examined grossly. Results showed that, when compared to gross evaluation, arthroscopy is capable of accurately identifying subtle changes in articular cartilage and bone. A statistically significant increase in error rate was found for lesions at the medial aspect of the proximal radial carpal bone. Other sites with limited arthroscopic access were the proximal ulnar carpal bone, the proximal fourth carpal bone, and the distal intermediate carpal bone. The accuracy of arthroscopic identification of lesions improved significantly during the study as experience with the technique was gained.  相似文献   

6.
Articular cartilage is a critical joint tissue and its evaluation remains a diagnostic challenge in horses. Coupled with a poor capacity for healing, early degenerative changes in articular cartilage are difficult to characterise using routine diagnostic imaging evaluations. Both computed tomography (CT) and magnetic resonance imaging (MRI) provide volumetric joint assessment and highlight morphological and quantitative properties of articular cartilage, improving assessment of this essential tissue. While the use of CT and MRI for joint evaluation is not new, there still remains a shortage of literature and scientific studies on the ability of these methods to evaluate articular cartilage in the horse. This review article summarises current CT and MRI techniques capable of characterising equine articular cartilage, highlights recent advances in these techniques and discusses the numerous methods studied in human subjects that have been minimally investigated in horses. Imaging techniques are presented in terms of their capabilities of offering morphological and quantitative evaluation along with a discussion of their benefits and limitations. Finally, it summarises the current state‐of‐the‐art approaches and identifies unmet clinical imaging needs to propel the advancement of articular cartilage and joint imaging in the horse.  相似文献   

7.
Comprehensive evaluation of canine elbow joint dysfunction includes assessment of articular cartilage, which can noninvasively be performed with contrast arthrography. Aims of this prospective study were to compare positive contrast computed tomographic (CT) arthrography and histomorphometry measures of cartilage thickness in normal canine elbows, and to determine the optimal contrast medium concentration. Thirty‐two canine cadaver elbows were examined using multidetector CT, before and after intra‐articular administration of iohexol at one of three different concentrations. Articular cartilage thickness was measured on both the CT arthrography images and corresponding histologic specimens. Mean difference (bias) between the CT arthrography and histomorphologic measurements was 0.18 and 0.19 mm in the sagittal and dorsal planes, respectively. Mean bias and precision of CT arthrography measurements made in the sagittal or dorsal reformations were not significantly different from one another. Computed tomographic arthrography measurements from elbows with 75 mg I/ml were significantly larger and had greater bias compared to other contrast medium groups (150 and 37.5 mg I/ml). There was no significant difference in CT arthrography measurement precision between different contrast medium concentrations. Histomorphologic thickness of the articular cartilage overlying the cranial aspect of the ulna (mean 0.32 mm) was significantly thinner than cartilage of the radius (0.36 mm) or humerus (0.36 mm). Findings from this cadaver study indicated that CT arthrography delineates articular cartilage of the normal canine elbow; yields cartilage thickness measures slightly greater than histomorphometry measures; and provides high measurement precision regardless of image plane, contrast medium concentration, or anatomic zone.  相似文献   

8.
The effect of intra-articular polysulfated glycosaminoglycan (PSG) on repair of chemical and physical articular cartilage injuries was evaluated in 8 horses. In each horse, a partial- and a full-thickness articular cartilage defect was made on the distal articular surface of the radial carpal bone. In the contralateral middle carpal joint, a chemical articular cartilage injury was induced by injecting 50 mg of Na monoiodoacetate (MIA). Four of the 8 horses were not treated (controls), and 4 horses were treated by intra-articular injection of 250 mg of PSG into both middle carpal joints once a week for 5 treatments starting 1 week after cartilage injury. Horses were maintained for 8 weeks. There was less joint circumference enlargement in PSG-treated horses in MIA-injected and physical defect carpi, compared with that in controls. In MIA-injected joints, there was less articular cartilage fibrillation and erosion, less chondrocyte death, and greater safranin-O staining for glycosaminoglycans in PSG-treated horses. Evaluation of joints in which physical defects were made revealed no differences between control and PSG-injected joints. None of the partial-thickness defects had healed. Full-thickness defects were repaired with fibrous tissue (which was more vascular and cellular in PSG-injected joints) and occasionally small amounts of fibrocartilage. Seemingly, PSG had chondroprotective properties in a model of chemically induced articular cartilage damage, whereas PSG had no obvious effect in a physical articular cartilage-defect model.  相似文献   

9.
The effects of intra-articular administration of methylprednisolone acetate (MPA) on the healing of full-thickness osteochondral defects and on normal cartilage were evaluated in 8 horses. In group-1 horses (n = 4), a 1-cm-diameter, full-thickness defect was created bilaterally in the articular cartilage on the dorsal distal surface of the radial carpal bone. Cartilage defects were not created in group-2 horses (n = 4). One middle carpal joint was randomly selected in each horse (groups 1 and 2), and treated with an intra-articular injection of 100 mg of MPA, once a week for 4 treatments. Injections began 1 week after surgery in group-1 horses. The contralateral middle carpal joint received intra-articular injections of an equivalent volume of 0.9% sodium chloride solution (SCS), and served as a control. Horses were evaluated for 16 weeks, then were euthanatized, and the middle carpal joints were examined and photographed. Synovial and articular cartilage specimens were obtained for histologic and histochemical evaluation. Gross morphometric evaluation of the healing defects in group-1 horses revealed that 48.6% of the defect in control joints and 0% of the defect in MPA-treated joints was resurfaced with a smooth, white tissue, histologically confirmed as fibrocartilage. This replacement tissue was a firmly attached fibrocartilage in control joints and a thin fibrous tissue in MPA-treated joints. The articular cartilage in joints treated with MPA had morphologic changes, including chondrocyte cluster formation, loss of palisading architecture, and cellular necrosis in both groups of horses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Magnetic resonance imaging and the correlation to histopathological findings of the equine palmar foot of lame horses have been described previously, using 0.27 and 1.5 T systems. Compared to these, 3 T systems provide superior spatial resolution and imaging contrast. The aim of our prospective anatomic study was to characterize the imaging anatomy of the navicular region on 3 T MRI in comparison to histopathological findings. We hypothesized that 3 T MRI allows a good visualization of the entire navicular apparatus and reliable measurements of navicular cartilage and cortical bone thickness. Twenty front feet of sound horses were examined using a 3 T MRI system. For histopathological examination, sagittal tissue sections of the navicular bones and adjacent ligaments were prepared. Alterations in magnetic resonance signal were graded for each region and compared to corresponding histological slices. Overall, there was good visualization of the anatomical detail and a very good agreement between MRI and histology for compact bone and spongiosa, good agreement for the fibrocartilage and the distal sesamoidean impar ligament, but only moderate agreement for the hyaline cartilage and the collateral sesamoidean ligament. A comparative measurement of cartilage and cortical bone thickness on magnetic resonance images and histological sections was performed. In MRI, the hyaline cartilage of the articular surface appeared significantly thinner and the fibrocartilage of the flexor surface appeared significantly thicker compared to histology. Findings indicated that MRI at a field strength of 3 T allows reliable depiction of anatomic details of the navicular apparatus.  相似文献   

11.
The mechanisms and completeness of equine articular cartilage repair were studied in ten horses over a nine month period. Large (15 mm square) and small (5 mm square) full-thickness lesions were made in weight bearing and nonweight bearing areas of the radiocarpal, middle carpal and femoropatellar joints. The horses were euthanized in groups of two 1, 2.5, 4, 5 and 9 months later. Gross pathology, microradiography, and histopathology were used to evaluate qualitative aspects of articular repair. Computer assisted microdensitometry of safranin-O stained cartilage sections was used to quantitate cartilage matrix proteoglycan levels. Structural repair had occurred in most small defects at the end of nine months by a combination of matrix flow and extrinsic repair mechanisms. Elaboration of matrix proteoglycans was not complete at this time. Statistically better healing occurred in small weight bearing lesions, compared to large or nonweight bearing lesions. Synovial and perichondrial pannus interfered with healing of osteochondral defects that were adjacent to the cranial rim of the third carpal bone. Clinical and experimental experience suggests that these lesions are unlikely to heal, whereas similar lesions in the radiocarpal and femoropatellar joints had satisfactory outcomes. Observations made in this study support the use of early postoperative ambulation, passive flexion of operated joints, and recuperative periods of up to a year for large cartilage defects.  相似文献   

12.
The effect of intramuscular polysulfated glycosaminoglycan (PSG) on repair of cartilage injury was evaluated in eight horses. In each horse, one middle carpal joint had both a partial-thickness and a full-thickness articular cartilage defect created. In the contralateral middle carpal joint, chemical articular cartilage injury was created by intra-articular injection of 50 mg sodium monoiodoacetate (MIA). Horses were divided into two groups for treatment. Group 1 horses (control) received an intramuscular injection of normal saline every four days for a total of seven injections starting seven days after cartilage injury. Group 2 horses received 500 mg of PSG intramuscularly every four days for seven treatments starting seven days after cartilage injury. Horses were maintained for 12 weeks. Horses were evaluated clinically, and their middle carpal joints were evaluated radiographically and arthroscopically at the end of the study. Joint tissues were also collected and examined microscopically. The only significant difference between groups was slightly greater matrix staining intensity for glycosaminoglycans in the radiate articular cartilage layer in MIA injected and PSG treated joints. Partial-thickness defects had not healed and the predominant repair tissue in full-thickness defects was fibrous tissue. It was concluded that using this joint injury model, 500 mg PSG administered intramuscularly had no effect on the healing of articular cartilage lesions, and minimal chondroprotective effect from chemically induced articular cartilage degeneration.  相似文献   

13.
The uptake and distribution of intramuscularly (IM) administered tritium-labeled polysulfated glycosaminoglycan (3H-PSGAG) in serum, synovial fluid, and articular cartilage of eight horses was quantitated, and hyaluronic acid (HA) concentration of the middle carpal joint was evaluated in a pharmacokinetic study. A full-thickness articular cartilage defect, created on the distal articular surface of the left radial carpal bone of each horse served as an osteochondral defect model. 3H-PSGAG (500 mg) was injected IM, between 14 and 35 days after creation of the defects. Scintillation analysis of serum and synovial fluid, collected from both middle carpal joints at specific predetermined times up to 96 hours post-injection, revealed mean 3H-PSGAG concentrations peaked at 2 hours post-injection. 3H-PSGAG was detected in cartilage and subchondral bone 96 hours post-injection in samples from all eight horses. There were no statistically significant differences in 3H-PSGAG concentration of synovial fluid or cartilage between cartilage defect and control (right middle carpal) joints.

HA assay of synovial fluid revealed concentrations significantly increased at 24, 48, and 96 hours post-injection in both joints. The concentration nearly doubled 48 hours post-injection. However, no statistically significant differences were found between synovial concentrations of HA in cartilage defect and control joints.

3H-PSGAG administered IM to horses, was distributed in the blood, synovial fluid, and articular cartilage. HA concentrations in synovial fluid increased after IM administration of polysulfated glycosaminoglycan.  相似文献   


14.
15.
16.
Noninvasive identification of canine articular cartilage injuries is challenging. The objective of this prospective, cadaveric, diagnostic accuracy study was to determine if small field‐of‐view, three tesla magnetic resonance imaging (MRI) was an accurate method for identifying experimentally induced cartilage defects in canine stifle joints. Forty‐two canine cadaveric stifles (n = 6/group) were treated with sham control, 0.5, 1.0, or 3.0 mm deep defects in the medial or lateral femoral condyle. Proton density‐weighted, T1‐weighted, fast‐low angle shot, and T2 maps were generated in dorsal and sagittal planes. Defect location and size were independently determined by two evaluators and compared to histologic measurements. Accuracy of MRI was determined using concordance correlation coefficients. Defects were identified correctly in 98.8% (Evaluator 1) and 98.2% (Evaluator 2) of joints. Concordance correlation coefficients between MRI and histopathology were greater for defect depth (Evaluator 1: 0.68–0.84; Evaluator 2: 0.76–0.83) compared to width (Evaluator 1: 0.30–0.54; Evaluator 2: 0.48–0.68). However, MRI overestimated defect depth (histopathology: 1.65 ± 0.94 mm; Evaluator 1, range of means: 2.07–2.38 mm; Evaluator 2, range of means: 2–2.2 mm) and width (histopathology: 6.98 ± 1.32 mm; Evaluator 1, range of means: 8.33–8.8 mm; Evaluator 2, range of means: 6.64–7.16 mm). Using the paired t‐test, the mean T2 relaxation time of cartilage defects was significantly greater than the mean T2 relaxation time of adjacent normal cartilage for both evaluators (P < 0.0001). Findings indicated that MRI is an accurate method for identifying cartilage defects in the cadaveric canine stifle. Additional studies are needed to determine the in vivo accuracy of this method.  相似文献   

17.
The aim of this retrospective, methods comparison study was to assess the diagnostic utility of computed tomographic arthrography in the assessment of various intraarticular shoulder pathologies in dogs in comparison with survey computed tomography (CT), using arthroscopic examination as the reference standard. Computed tomography, computed tomographic arthrography, and arthroscopic findings of 46 scapulohumeral joints of dogs with forelimb lameness were reviewed retrospectively. Predefined sites were assessed for the presence or absence of disease. If a lesion was present, a prespecified pathology was designated. Computed tomographic arthrography was found to be a safe technique which provided a superior diagnostic efficacy relative to survey CT for the assessment of the biceps tendon and biceps tendon sheath (sensitivity 71%, specificity 75%, positive likelihood ratio 2.9, negative likelihood ratio 0.38) and humeral head cartilage (sensitivity 65%, specificity 97%, positive likelihood ratio 19, negative likelihood ratio 0.37). Computed tomography and computed tomographic arthrography provided additional diagnostic information to arthroscopy in regard to osteophytosis, subchondral defects, and joint mice. Computed tomographic arthrography alone was of limited diagnostic value for assessment of the medial and lateral glenohumeral ligaments (sensitivity 13% and 0%, specificity 1% and 78%, positive likelihood ratios unmeasurable and 0, negative likelihood ratios 0.88 and 1.29, respectively) and the subscapularis tendon (sensitivity 14%, specificity 98%, positive likelihood ratio 5.7, negative likelihood ratio 0.88). Computed tomographic arthrography is therefore a useful adjunct to survey CT and arthroscopic evaluation of the canine shoulder joint, however, is not a replacement for these techniques.  相似文献   

18.
Hexosamine concentration, DNA concentration, and [35S]sulfate incorporation for articular cartilage obtained from various sites in the metacarpophalangeal and carpal joints of horses were measured. The same measurements were made on the repair tissue filling full-thickness articular defects in the intermediate carpal bone and on cartilage surrounding partial-thickness defects 6 weeks after the defects were created arthroscopically. Cellularity (measured as DNA concentration), proteoglycan content (measured as hexosamine concentration), and proteoglycan synthesis (measured as [35S]sulfate incorporation) varied according to the site sampled. Cartilage from the transverse ridge of the head of the third metacarpal bone and the radial facet of the third carpal bone had the lowest hexosamine concentration, whereas rate of proteoglycan synthesis was lowest in cartilage from the transverse ridge of the head of the third metacarpal bone and the distal articular surface of the radial carpal bone. Repair tissue filling a full-thickness cartilage defect at 6 weeks was highly cellular. It was low in proteoglycan content, but was actively synthesizing these macromolecules. In contrast, the cartilage surrounding a partial-thickness defect was unchanged 6 weeks after the original defect was made.  相似文献   

19.
Magnetic resonance imaging (MRI) is the most sensitive imaging modality to detect the early changes of osteoarthritis. Currently, there is no quantifiable method to tract these pathological changes over time in the horse. The objective of this experimental study was to characterize the progression of MRI changes in an equine model of post‐traumatic osteoarthritis using a semiquantitative scoring system for whole‐organ evaluation of the middle carpal joint. On day 0, an osteochondral fragment was created in one middle carpal joint (OCI) and the contralateral joint (CON) was sham‐operated in 10 horses. On day 14, study horses resumed exercise on a high‐speed treadmill until the completion of the study (day 98). High‐field MRI examinations were performed on days 0 (preosteochondral fragmentation), 14, and 98 and scored by three blinded observers using consensus agreement. Images were scored based on 15 independent articular features, and scores were compared between and within‐groups. On days 14 and 98, OCI joints had significantly (P ≤ 0.05) higher whole‐organ median scores (29.0 and 31.5, respectively), compared to CON joints (21.5 and 20.0, respectively). On day 14, OCI joints showed significant increases in high‐signal bone lesion scores, and osteochondral fragment number and size. On day 98, high‐signal bone lesion, low‐signal bone lesion, osteophyte formation, cartilage signal abnormality, subchondral bone irregularity, joint effusion, and synovial thickening scores were significantly increased in OCI joints. Study results suggest that the MRI whole‐organ scoring system reported here may be used to identify onset and progression of pathological changes following osteochondral injury.  相似文献   

20.
Reasons for performing study: To date, few reports exist comparing magnetic resonance imaging (MRI) and computed tomography (CT) for imaging of the equine distal limb, yet clinicians are required to decide which modality to use regularly. Objectives: To report and compare anatomic visualisation scores obtained for CT, contrast enhanced CT (CECT) and standing low‐field MRI (LFMRI) in the equine foot. Hypothesis: Anatomic visualisation score discrepancies would exist between CT, CECT and LFMRI. Methods: Images of 22 lame horses (31 limbs) undergoing both CT and LFMRI of the foot were reviewed. When available, CECT images were reviewed. The deep digital flexor tendon (DDFT) was categorised into proximal to distal levels (A–D), structures were assigned visualisation scores (Grades 0–3) and technique comparisons were made using the paired marginal homogeneity test. Results: Computed tomography and LFMRI had similar visibility scores for the navicular bone, middle phalanx, DDFT‐B, collateral ligaments of the distal interphalangeal joint and collateral sesamoidean ligament of the navicular bone. The proximal and distal phalanx had lower visibility scores with LFMRI. The distal DDFT (C–D), distal sesamoidean impar ligament and synovial structures had higher scores with LFMRI. Contrast enhanced CT lowered DDFT and collateral sesamoidean ligament scores and raised distal interphalangeal synovium CT visualisation scores. Conclusions and potential relevance: Visualisation scores differ depending on imaging technique and anatomic structure of interest. This information increases our understanding of the limitations of CT, CECT and LFMRI to visualise anatomy in clinical cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号