首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
For accurate interpretation of magnetic resonance (MR) images of the equine brain, knowledge of the normal cross‐sectional anatomy of the brain and associated structures (such as the cranial nerves) is essential. The purpose of this prospective cadaver study was to describe and compare MRI and computed tomography (CT) anatomy of cranial nerves' origins and associated skull foramina in a sample of five horses. All horses were presented for euthanasia for reasons unrelated to the head. Heads were collected posteuthanasia and T2‐weighted MR images were obtained in the transverse, sagittal, and dorsal planes. Thin‐slice MR sequences were also acquired using transverse 3D‐CISS sequences that allowed mutliplanar reformatting. Transverse thin‐slice CT images were acquired and multiplanar reformatting was used to create comparative images. Magnetic resonance imaging consistently allowed visualization of cranial nerves II, V, VII, VIII, and XII in all horses. The cranial nerves III, IV, and VI were identifiable as a group despite difficulties in identification of individual nerves. The group of cranial nerves IX, X, and XI were identified in 4/5 horses although the region where they exited the skull was identified in all cases. The course of nerves II and V could be followed on several slices and the main divisions of cranial nerve V could be distinguished in all cases. In conclusion, CT allowed clear visualization of the skull foramina and occasionally the nerves themselves, facilitating identification of the nerves for comparison with MRI images.  相似文献   

2.
Reasons for performing study: Noncontrast magnetic resonance angiography (MRA) is widely used in human and small animal medicine. However, this technique has not yet been described in the horse, and compared to other angiographic techniques MRA could be more cost efficient and potentially safer. Objectives: The aim of this study was to provide a comprehensive anatomical reference of the normal equine head vasculature using a noncontrast MRA technique, on both low‐ and high‐field MRI. Methods: Five healthy adult horses were examined, 4 with a low‐field magnet (0.23T) and the remaining one with a high‐field magnet (1.5T). The magnetic resonance angiography sequence used was TOF (time‐of‐flight) 2D‐MRA and CT images of a vascular corrosion cast were subsequently used as anatomical references. Results: The MRA imaging protocol provided good visualisation of all major intra‐ and extracranial vessels down to a size of approximately 2 mm in diameter on both low‐ and high‐field systems. This resulted in identification of vessels to the order of 3rd–4th branches of ramification. The visibility of the arteries was higher than of the veins, which showed lower signal intensity. Overall, MRA obtained with the high‐field protocol provided better visualisation of the arteries, showing all the small arterial branches with a superior resolution. Conclusions: The use of a specific vascular sequence such as TOF 2D‐MRA allows good visualisation of the equine head vasculature and eliminates the need for contrast media for MRA. Potential relevance: Magnetic resonance angiography allows for visualisation of the vasculature of the equine head. Vessel morphology, symmetry and size can be evaluated and this may possibly play a role in preoperative planning or characterisation of diseases of the head, such as neoplasia or guttural pouch mycosis.  相似文献   

3.
Reasons for performing study: To date, few reports exist comparing magnetic resonance imaging (MRI) and computed tomography (CT) for imaging of the equine distal limb, yet clinicians are required to decide which modality to use regularly. Objectives: To report and compare anatomic visualisation scores obtained for CT, contrast enhanced CT (CECT) and standing low‐field MRI (LFMRI) in the equine foot. Hypothesis: Anatomic visualisation score discrepancies would exist between CT, CECT and LFMRI. Methods: Images of 22 lame horses (31 limbs) undergoing both CT and LFMRI of the foot were reviewed. When available, CECT images were reviewed. The deep digital flexor tendon (DDFT) was categorised into proximal to distal levels (A–D), structures were assigned visualisation scores (Grades 0–3) and technique comparisons were made using the paired marginal homogeneity test. Results: Computed tomography and LFMRI had similar visibility scores for the navicular bone, middle phalanx, DDFT‐B, collateral ligaments of the distal interphalangeal joint and collateral sesamoidean ligament of the navicular bone. The proximal and distal phalanx had lower visibility scores with LFMRI. The distal DDFT (C–D), distal sesamoidean impar ligament and synovial structures had higher scores with LFMRI. Contrast enhanced CT lowered DDFT and collateral sesamoidean ligament scores and raised distal interphalangeal synovium CT visualisation scores. Conclusions and potential relevance: Visualisation scores differ depending on imaging technique and anatomic structure of interest. This information increases our understanding of the limitations of CT, CECT and LFMRI to visualise anatomy in clinical cases.  相似文献   

4.
Traumatic and infectious diseases of the eye and orbit can occur in horses. For diagnosis and monitoring of such diseases, medical imaging is useful including computed tomography (CT) and magnetic resonance imaging (MRI). The aim of the current study was to describe CT and MRI anatomy of the equine orbit and ocular globe. The heads from four adult horses were scanned with a 6‐slice Emotion 6 CT (Siemens, Erlangen), and a 3.0 Tesla Siemens Verio 6 MRI using T1 and T2‐weighted sequences. To validate CT and MR reference images, these were compared with anatomical models and gross anatomical sections. The bony limits of the orbital cavity, the relationship of the orbit with sinuses and foramina of the skull were well identified by CT. MRI was useful to observe soft tissues and was able to identify adnexae of the ocular globe (eyelids, periorbital fat, extraocular muscles, lacrymal and tarsal glands). Although MRI was able to identify all components of the eye (including the posterior chamber), it could not differentiate sclera from choroid and retina. The only nerve identified was the optic nerve. Vessels were not seen in this series of cadaver heads. This study showed that CT and MRI are useful techniques to image the equine orbit and eye that can have clinical applications.  相似文献   

5.
With the recent introduction of a 0.25T rotating MRI system, clinical evaluation of the equine stifle joint is now possible in the average equine athlete. A recent publication described common abnormalities of horses with stifle lameness detected with a low‐field MRI system; however, postmortem corroboration of the lesions detected was not possible. Therefore, our objective was to compare postmortem findings with low‐field MRI findings in equine cadaver stifle joints. Ten fresh cadaver stifle joints from horses without clinical signs of stifle disease were evaluated using low‐field MRI, gross dissection, and histopathology. In eight stifles, either the lateral or medial cranial meniscotibial ligament had an irregular shape, fiber separation, or moderate abnormal signal intensity (SI) on all sequences. In five stifles, the medial femoral condyle had articular cartilage fibrillation with or without an osteochondral defect over the weight bearing surface of the medial femoral condyle. All stifles had abnormal SI on all sequences within the patellar ligaments that corresponded with adipose tissue infiltrating between the collagen bundles. Other abnormalities identified included articular cartilage fibrillation of the tibial condyles in three stifles, and articular cartilage fibrillation with chondral defects in the patella in three stifles. All abnormalities detected with low‐field MRI were corroborated by gross dissection. Findings from the current study supported the use of low‐field MRI for detection of stifle joint lesions in horses and demonstrated that some stifle joint pathologies may be subclinical in horses.  相似文献   

6.
The equine head is an anatomically complex area, therefore advanced tomographic imaging techniques, such as computed tomography or magnetic resonance imaging (MRI), are often required for diagnosis and treatment planning. The purpose of this multicenter retrospective study was to describe MRI characteristics for a large sample of horses with head disorders. Horses imaged over a period of 13 years were recruited. Eighty‐four horses met the inclusion criteria, having neurological (n = 65), sinonasal (n = 14), and soft tissue (n = 5) disorders. Magnetic resonance imaging accurately depicted the anatomy and allowed identification of the primary lesion and associated changes. There were good correlations between MRI findings and intraoperative or postmortem results. Magnetic resonance imaging showed the exact localization of the lesions, their size, and relation to surrounding structures. However, in the neurological group, there were 45 horses with no MRI abnormalities, 29 of which had a history of recurrent seizures, related to cryptogenic epilepsy. Magnetic resonance imaging was otherwise a valuable diagnostic tool, and can be used for studying a broad range of head disorders using either low‐field or high‐field magnets.  相似文献   

7.
The purpose of this investigation was to define the anatomy of the cranioencephalic structures in horses using computed tomography (CT). Transverse images of two isolated equine cadaver heads were obtained using a Toshiba 600 HQ (third-generation equipment TCT). CT images were compared to corresponding frozen cross-sections of the cadaver head. Relevant anatomical structures were identified and labelled at each level. The resulting images provided excellent anatomic detail of the structures of the central nervous system and associated formations. Annotated CT images from this study are intended as a reference for clinical CT imaging studies of the equine head.  相似文献   

8.
Reasons for performing study: The use of computer tomography (CT) and contrast‐enhanced CT (CCT) to image the head is common. However, the validity of CT as a neurodiagnostic indicator of intracranial diseases in horses is unknown. Objective: To define the validity of CT and CCT in horses with suspected intracranial disorders. Methods: The validity of CT imaging was estimated by comparing clinical, clinicopathological and histopathological findings to CT findings in 15 horses presented for intracranial disorders, for which pre‐ and post contrast CT images and post mortem examination of the brain and skull were reviewed. Post mortem examination (gross and histopathological examination) was considered as the gold standard; and sensitivity, specificity, predictive values, likelihood ratios, and pre‐ and post test probabilities were calculated. Results: All horses had abnormal neurological examinations on admission. Computer tomography imaging identified intracranial lesions in 8 horses, and included masses (oligodendroglioma, adenocarcinoma and cholesterinic granulomas), acute haemorrhage and skull fractures. Computer tomography imaging failed to identify intracranial lesions in 6 cases, which included meningitis, meningoencephalitis and nonacute haemorrhage. Lesions not recognised by CT were also not evident on gross examination but were identified by histopathological examination of the brain. Post mortem examination of the brain and skull was unremarkable in one horse, for which cranial CT imaging was normal (specificity, 100%). Therefore, the odds of having an intracranial lesion after an abnormal CT were very high. In contrast, there was a moderate sensitivity (57.1%, 95% confidence interval: 29.6–81.2). Conclusions and potential relevance: CT was an excellent neurodiagnostic tool in identifying skull fractures, intracranial space‐occupying lesions (e.g. neoplasia) and acute haemorrhage and allows to rule in intracranial disorders. However, CT showed limited sensitivity in identifying inflammatory disorders and small parenchymal lesions in the equine brain, which was not further detectable after contrast administration.  相似文献   

9.
The utility of magnetic resonance (MR) imaging in the evaluation of equine solar foot penetrations is well established. The objective of this pilot study was to evaluate the utility of MR imaging in assessment of equine distal limb wounds excluding solar penetrations. Low-field MR images of 23 horses that had previously sustained distal limb wounds were reviewed in consensus by two ECVDI diplomats. Structures (bone; synovial structure; subcutaneous tissue and skin; and ligament/tendon) were identified as normal or abnormal on MR images, radiographs and ultrasound images and reports. All abnormalities were described. The presence of artefacts and their effect on image interpretation were also noted for each modality. Comparisons were made between imaging modalities, and it was noted if MR imaging influenced case management. Abnormalities of the bone were identified in 26% of horses on MR images and 17% of horses on radiographs; there were no osseous abnormalities identified on radiographs that were not identified on MR images, and additional features and better characterisation of lesions were noted on MR images. Tendon/ligament abnormalities were identified in 57% horses on MR and 47% of horses on ultrasound images. Magnetic susceptibility artefacts compromised MR image interpretation in 17% of horses. MR imaging of equine distal limb wounds allowed identification of both osseous and tendon/ligament abnormalities in more cases than either radiography or ultrasonography, and altered case management in 20/23 horses. Although MR imaging should not replace conventional imaging, this study highlights that MR imaging of equine distal limb wounds can yield information not detected on conventional imaging which may direct treatment and affect prognostication.  相似文献   

10.
11.
Objective Conventional imaging modalities can diagnose the source of foot pain in most cases, but have limitations in some horses, which can be overcome by using magnetic resonance imaging (MRI). However, there are no reports of the MRI appearance and prevalence of foot lesions of a large series of horses with chronic foot lameness. Methods In the present study, 79 horses with unilateral or bilateral forelimb lameness because of chronic foot pain underwent standing low‐field MRI to make a definitive diagnosis. Results Of the 79 horses, 74 (94%) had alterations in >1 structure in the lame or lamest foot. Navicular bone lesions occurred most frequently (78%) followed by navicular bursitis (57%), deep digital flexor tendonopathies (54%) and collateral desmopathy of the distal interphalangeal joint (39%). Effusion of the distal interphalangeal joint was also a frequent finding (53%). Conclusion Low‐field MRI in a standing patient can detect many lesions of the equine foot associated with chronic lameness without the need for general anaesthesia.  相似文献   

12.
This study investigated 15 horses diagnosed with temporohyoid osteoarthopathy (THO) and treated by ceratohyoidectomy between 2004 and 2012. The presenting complaint, duration and nature of the clinical signs, additional diagnostic procedures, and complications were reviewed retrospectively. Long-term follow-up on horses was used to determine prognosis. All horses were diagnosed by guttural pouch endoscopy. Follow-up was available for 14 horses that survived to discharge. Eight of 10 horses that were used athletically prior to surgery returned to previous levels of use. Persisting clinical signs included mild facial nerve paralysis (3/14; 21.4%) or head tilt (6/14; 42.8%) but these were not functionally limiting. It was concluded that equine THO affects a wide range of breeds, disciplines, and ages of horses, and has a variety of presenting clinical signs most commonly associated with vestibular and facial nerves. Prognosis following ceratohyoidectomy is good for resolution of ataxia but some cranial nerve deficits may persist.  相似文献   

13.
Articular cartilage is a critical joint tissue and its evaluation remains a diagnostic challenge in horses. Coupled with a poor capacity for healing, early degenerative changes in articular cartilage are difficult to characterise using routine diagnostic imaging evaluations. Both computed tomography (CT) and magnetic resonance imaging (MRI) provide volumetric joint assessment and highlight morphological and quantitative properties of articular cartilage, improving assessment of this essential tissue. While the use of CT and MRI for joint evaluation is not new, there still remains a shortage of literature and scientific studies on the ability of these methods to evaluate articular cartilage in the horse. This review article summarises current CT and MRI techniques capable of characterising equine articular cartilage, highlights recent advances in these techniques and discusses the numerous methods studied in human subjects that have been minimally investigated in horses. Imaging techniques are presented in terms of their capabilities of offering morphological and quantitative evaluation along with a discussion of their benefits and limitations. Finally, it summarises the current state‐of‐the‐art approaches and identifies unmet clinical imaging needs to propel the advancement of articular cartilage and joint imaging in the horse.  相似文献   

14.
This retrospective study describes the computed tomography (CT) findings in 59 horses presented with diseases of the head over 8 years that underwent CT examination of this region, including dental or sinonasal diseases (Group A) (n = 42), osseous and/or articular diseases (Group B) (n = 11) and soft tissue diseases (Group C) (n = 6). For Group A, radiographic and CT findings comparison was possible. Computed tomography had higher sensitivity (100%) and specificity (96.7%) than radiography in diagnosing dental disease. Compared to CT, radiographic identification of sinus involvement was less sensitive, particularly for ventral conchal and sphenopalatine sinuses and presented an overall sensitivity of 43.5 and 16.7%, respectively. In Group B CT allowed identification of a higher number of bone fragments and fractures in the maxillary, lacrimal, sphenoidal, temporal and zygomatic bones not identified radiographically. Accurate identification of CT changes in the temporomandibular joint and temporohyoid articulation was also possible. Group C included both intra‐ and extra‐cranial disease, retrobulbar masses being the most representative pathology (n = 3). In this group, CT was considered the gold standard for detection of periorbital diseases. We conclude that CT is an imaging technique with high diagnostic value for evaluating the equine head, yielding additional information over multiple radiographic views, which may alter the outcome of the case. Additionally, this paper reports several conditions not previously described using CT.  相似文献   

15.
The equine head is an anatomically highly complex area affected by a range of disorders, making the diagnosis of head conditions challenging. Imaging techniques play a crucial role in the diagnostic work-up of head disorders. Tomographic imaging methods, such as computed tomography (CT) and magnetic resonance imaging (MRI) are particularly useful in avoiding problems associated with superimposition of multiple structures in this highly complex region. Both techniques are becoming more widely available in equine medicine. However, the choice between CT and MRI for imaging the equine head is not always straightforward. Each modality has advantages and disadvantages in terms of practicality, costs and diagnostic value for particular problems. The aim of this review is to describe the application of CT and MRI for imaging the equine head and to provide a practical guide for their use in different anatomical structures and clinical indications. This should allow the equine practitioner to make an informed decision on which modality to choose.  相似文献   

16.
OBJECTIVE: To map the equine pelvis using ultrasonography, validated by use of computed tomography (CT), magnetic resonance imaging (MRI), and measurements of frozen cadaver slices. ANIMALS: 6 ponies and 6 horses. PROCEDURE: Ultrasonographic examination of the pelvis was performed on 6 clinically normal ponies. Measurements were obtained for imaged structures. Computed tomography, MRI, and measurements of frozen sections were performed after death and used to verify measurements. Linear regression determined the degree of correlation between measurements obtained ultrasonographically and the other modalities. Six clinically normal horses were then examined by use of ultrasonography. For each structure measured mean, SD, and range were calculated. RESULTS: Data obtained from ponies revealed high correlations between ultrasonographic findings and those of CT, MRI, and frozen section measurements (r2 = 0.97, r2 = 0.99, and r2 = 0.99, respectively). Differences between structures measured on each side of the pelvis were not significant. Variation in size of structures was not associated with weight of horses. A correlation was not found between weight of horses and ponies and size of structure. CONCLUSIONS AND CLINICAL RELEVANCE: Ultrasonography can be used to accurately measure and evaluate the musculoskeletal structures of the pelvis of horses. The use of CT, MRI, and measurements of frozen sections provided a means of validating the ultrasonographic measurements. Reference range values determined in our study can be used to evaluate horses with suspected pelvic disease.  相似文献   

17.
This study was intended to document normal ultrasonographic appearance of the equine shoulder and anatomic landmarks useful in clinical imaging. Both forelimbs of five equine cadavers and both forelimbs of six live adult horses were used. To facilitate understanding of the images, a zoning system assigned to the biceps brachii and to the infraspinatus tendon was developed. Ultrasonography was performed with a real-time B-mode semiportable sector scanner using 7.5- and 5-MHz transducers. On one cadaver limb, magnetic resonance imaging (MRI) was performed using a system at 1.5 Tesla, T1-weighted spin-echo sequence. Ultrasonography images were compared to frozen specimens and MRI images to correlate the ultrasonographic findings to the gross anatomy of the shoulder. Ultrasonography allowed easy evaluation of the biceps brachii and the infraspinatus tendon and their bursae, the supraspinatus muscle and tendons, the superficial muscles of the shoulder, and the underlying humerus and scapula. Only the lateral and, partially, the caudal aspects of the humeral head could be visualized with ultrasound. Ultrasonographic appearance, orientation, and anatomic relationships of these structures are described. Ultrasonographic findings correlated well with MRI images and with gross anatomy in the cadavers' limbs.  相似文献   

18.
REASONS FOR PERFORMING STUDY: The occurrence of unexpectedly high numbers of horses with neurological signs during two outbreaks of strangles required prompt in-depth researching of these cases, including the exploration of magnetic resonance imaging (MRI) as a possible diagnostic technique. OBJECTIVES: To describe the case series and assess the usefulness of MRI as an imaging modality for cases suspected of space-occupying lesions in the cerebral cavity. METHODS: Four cases suspected of suffering from cerebral damage due to Streptococcus equi subsp. equi infection were examined clinically, pathologically, bacteriologically, by clinical chemistry (3 cases) and MRI (2 cases). In one case, MRI findings were compared to images acquired using computer tomography (CT). RESULTS: In all cases, cerebral abscesses positive for Streptococcus equi subsp. equi were found, which explained the clinical signs. Although the lesions could be visualised with CT, MRI images were superior in representing the exact anatomic reality of the soft tissue lesions. CONCLUSIONS: The diagnosis of bastard strangles characterised by metastatic brain abscesses was confirmed. MRI appeared to be an excellent tool for the imaging of cerebral lesions in the horse. POTENTIAL CLINICAL RELEVANCE: The high incidence of neurological complications could not be explained but possibly indicated a change in virulence of certain strains of Streptococcus equi subsp. equi. MRI images were very detailed, permitting visualisation of much smaller lesions than demonstrated in this study and this could allow prompt clinical intervention in less advanced cases with a better prognosis. Further, MRI could assist in the surgical treatment of brain abscesses, as has been described earlier for CT.  相似文献   

19.
20.
Ophthalmic imaging.   总被引:1,自引:0,他引:1  
The availability of advanced imaging modalities in veterinary medicine has greatly widened the diagnostic imaging capabilities possible.Ultrasonography provides a rapid noninvasive modality that provides detailed examination and resolution of the intraocular structures and soft tissues surrounding the orbit of opaque eyes.Ultrasonography is cost-effective and widely available to practitioners,referral centers, and academic institutions. In many areas,mobile specialist ultrasonographers are available to supplement the equipment and skills of the practitioner. The added strengths of CT and MRI lie in their cross-sectional capability and better image quality. Unfortunately, the cost of CT and MRI currently limits their availability to referral centers and academic institutions.Primarily because of financial considerations, CT is currently more widely available for evaluation of equine disorders than MRI. A thorough evaluation of the multiple images and an understanding of normal anatomy and abnormal tissue patterns are indicated to maximize the use of each modality. Unlike ultrasonography, which can be performed in awake horses, the costs and contraindications of general anesthesia in some critical patients should also be considered when using CT and MRI. Finally, imaging artifacts are frequently encountered with each of these modalities. Thus, a thorough understanding of the various types of artifacts that occur is important so as to avoid interpretation pitfalls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号