首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 601 毫秒
1.

Background

Extraintestinal pathogenic Escherichia coli bacteria (ExPEC) exist as commensals in the human intestines and can infect extraintestinal sites and cause septicemia. The transfer of ExPEC from poultry to humans and the role of poultry meat as a source of ExPEC in human disease have been discussed previously. The aim of the present study was to provide insight into the properties of ExPEC in poultry meat products on the Finnish retail market with special attention to their prevalence, virulence and phylogenetic profiles. Furthermore, the isolates were screened for possible ESBL producers and their resistance to nalidixic acid and ciprofloxacin was tested.

Methods

The presence of ExPEC in 219 marinated and non-marinated raw poultry meat products from retail shops has been analyzed. One E. coli strain per product was analyzed further for phylogenetic groups and possession of ten virulence genes associated with ExPEC bacteria (kpsMT K1, ibeA, astA, iss, irp2, papC, iucD, tsh, vat and cva/cv) using PCR methods. The E. coli strains were also screened phenotypically for the production of extended-spectrum β-lactamase (ESBL) and the susceptibility of 48 potential ExPEC isolates for nalidixic acid and ciprofloxacin was tested.

Results

E. coli was isolated from 207 (94.5%) of 219 poultry meat products. The most common phylogenetic groups were D (50.7%), A (37.7%), and B2 (7.7%). Based on virulence factor gene PCR, 23.2% of the strains were classified as ExPEC. Two ExPEC strains (1%) belonged to [O1] B2 svg+ (specific for virulent subgroup) group, which has been implicated in multiple forms of ExPEC disease. None of the ExPEC strains was resistant to ciprofloxacin or cephalosporins. One isolate (2.1%) showed resistance to nalidixic acid.

Conclusions

Potential ExPEC bacteria were found in 22% of marinated and non-marinated poultry meat products on the Finnish retail market and 0.9% were contaminated with E. coli [O1] B2 svg+ group. Marinades did not have an effect on the survival of ExPEC as strains from marinated and non-marinated meat products were equally often classified as ExPEC. Poultry meat products on the Finnish retail market may have zoonotic potential.  相似文献   

2.
The emergence of CTX-M-1 producing Uropathogenic Escherichia coli (UPEC) has become a serious challenge. In addition to antimicrobial resistance, a number of virulence factors have been shown. Therefore, this study was designed to determine the prevalence of O- serogroups, phylogenetic groups, exotoxin genes, and antimicrobial resistance properties of CTX-M-1- producing UPEC. A total of 248 UPEC isolates were collected. The antibiotic resistance was performed, and PCR was used to detect the blaCTX-M1, exotoxins, serogroups and phylogroups of UPEC. Of 248 isolates, 95 (38.3%) harbored blaCTX-M-1. Of them, serogroups O1 and O25 were predominant, accounting for 20% and 13.7%, respectively. The hlyA was the dominant exotoxin gene (32.6%), followed by sat (28.4%), vat (22.1%), cnf (13.7%), picU (8.4%), and cdt (2.1%). The hlyA gene was significantly associated with pyelonephritis (P = 0.003). Moreover, almost half of the isolates (45.4%) belonged to phylogenetic group B2. Most of exotoxin genes were present in significantly higher proportions in group B2 isolates except cdt gene (P < 0.05). All of the isolates were susceptible to imipenem, nitrofurantoin, and fosfomycin. The CTX-M-1-producing UPEC strains causing nosocomial infections are more likely to harbor certain exotoxin genes, raising the possibility that this increase in virulence genes may result in an increased risk of complicated UTI.  相似文献   

3.
One hundred and twenty seven Escherichia coli isolates from bovine mastitis were examined to detect the phylogenetic group/subgroups and a selection of virulence associated genes. Forty nine (38.58%) isolates belonged to group B1 the remaining isolates fell into four phylogenetic subgroups: A0 (18.11%), A1 (26.77%), D1 (6.29%) and D2 (10.23%). None of the isolates belonged to B2 group. Forty seven (37.00%) isolates were positive for at least one virulence gene, among them f17A was the most common gene, found in 20.47% of the isolates. Among the E. coli isolates, 11.81% had iucD, 9.44% f17c-A, 9.44% cnf2, 7.87% f17b-A, 6.29% afaD-8 and afaE-8, 3.14% f17d-A, 0.78% cnf1 and 0.78% clpG genes. All of the detected virulence genes were present alone or in combination with each other except clpG and f17d-A genes that were only found alone. None of the isolates contained the genes for F17a-A, intimin, P or S fimbriae.  相似文献   

4.
Escherichia (E.) coli serotype O157:H7 is a globally distributed human enteropathogen and is comprised of microorganisms with closely related genotypes. The main reservoir for this group is bovine bowels, and infection mainly occurs after ingestion of contaminated water and food. Virulence genetic markers of 28 O157:H7 strains were investigated and multilocus enzyme electrophoresis (MLEE) was used to evaluate the clonal structure. O157:H7 strains from several countries were isolated from food, human and bovine feces. According to MLEE, O157:H7 strains clustered into two main clonal groups designated A and B. Subcluster A1 included 82% of the O157:H7 strains exhibiting identical MLEE pattern. Most enterohemorrhagic E. coli (EHEC) O157:H7 strains from Brazil and Argentina were in the same MLEE subgroup. Bovine and food strains carried virulence genes associated with EHEC pathogenicity in humans.  相似文献   

5.
An Escherichia coli strain (SEPT13) isolated from the liver of a hen presenting clinical signs of septicaemia had a LD50 of 4.0 × 105 CFU/ml in one-day-old chickens, expressed Ia, Ib, E1, E3, K and B colicins and aerobactin. The strain was ampicillin and streptomycin resistant, and found to have fimA, csgA and tsh DNA related sequences; it could adhere to and invade HEp-2 and tracheal epithelial cells, expressed fimbriae (observed by electron microscopy), and had five plasmids of 2.7, 4.7, 43, 56, and 88 MDa. Transposon mutagenesis of strain SEPT13, with transposon TnphoA, resulted in a mutant strain named ST16 that had a LD50 of 1.2 × 1012 CFU/ml. All other biological characteristics of strain ST16 were the same as those detected for strain SEPT13 except for the migration of an 88 MDa plasmid to the 93 MDa position indicating the insertion of the transposon into the 88 MDa plasmid. The 93 MDa plasmid of strain ST16 was transferred, by electroporation assay, to non-pathogenic receptor strains (E. coli strains K12 MS101 and HB101), resulting in transformant strains A and B, respectively. These strains exhibited adhesion properties to in vitro cultivated HEp-2 cells but did not have the capacity for invasion. The adherence occurred despite the absence of fimbriae; this finding suggests that the 88 MDa plasmid has afimbrial adhesin genes.  相似文献   

6.
The purposes of this study were to determine the phylogenetic background and the virulence gene profiles of Escherichia coli isolates from colisepticemic and feces of healthy (AFEC) broiler chickens. In this study, 253 E. coli isolates including 141 avian pathogenic E. coli (APEC) and 112 AFEC isolates were examined by PCR. In general, 253 E. coli isolates distributed among group A (51.8%), B1 (15.8%), B2 (8.7%), and D (23.7%). Ten (8.9%) AFEC isolates segregated in to B1 phylo-group and 102 (91.1%) isolates fell into six different phylogenetic subgroups. Distribution of colisepticemic and fecal isolates differed significantly in their assignments to A and B1 phylo-groups. The three most prevalent virulence genes were crl, fimH, and aer in isolates between both groups. The four genetic markers aer, papC, afa, and sfa were detected significantly more often among colisepticemic isolates than in fecal isolates from healthy broilers. The presence of stx 2 gene in fecal isolates were significantly differs among the colisepticemic isolates. F17 fimbrial family encoding gene and eae gene were detected in APEC and AFEC isolates, respectively. The colisepticemic and fecal isolates possessed the virulence genes were detected in all of the four phylogenetic groups. Several combination patterns of the virulence genes were detected in APEC and AFEC isolates. In colisepticemic isolates the combination of aer, crl, and fimH genes was the most prevalent pattern. None of the examined isolates harbored the cdt, cnf1, ipaH, and stx 1 virulence gene sequences.  相似文献   

7.
Escherichia fergusonii has been associated with a wide variety of intestinal and extra-intestinal infections in both humans and animals but, despite strong circumstantial evidence, the degree to which the organism is responsible for the pathologies identified remains uncertain. Thirty isolates of E. fergusonii collected between 2003 and 2004 were screened using an Escherichia coli virulence gene array to test for the presence of homologous virulence genes in E. fergusonii. The iss (increased serum survival) gene was present in 13/30 (43%) of the test strains and the prfB (P-related fimbriae regulatory) and ireA (siderophore receptor IreA) genes were also detected jointly in 3/30 (10%) strains. No known virulence genes were detected in 14/30 (47%) of strains. Following confirmatory PCR and sequence analysis, the E. fergusoniiprfB, iss and ireA genes shared a high degree of sequence similarity to their counterparts in E. coli, and a particular resemblance was noted with the E. coli strain APEC O1 pathogenicity island. In tissue culture adherence assays, nine E. fergusonii isolates associated with HEp-2 cells with a ‘localised adherence’ or ‘diffuse adherence’ phenotype, and they proved to be moderately invasive. The E. fergusonii isolates in this study possess both some phenotypic and genotypic features linked to known pathotypes of E. coli, and support existing evidence that strains of E. fergusonii may act as an opportunistic pathogens, although their specific virulence factors may need to be explored.  相似文献   

8.
To examine the genetic background of avian pathogenic Escherichia coli (APEC) that affects virulence of this microorganism, we characterized the virulence genes of 101 APEC strains isolated from infected chickens between 1985~2005. Serotypes were determined with available anti-sera and median lethal doses were determined in subcutaneously inoculated chicks. The virulence genes we tested included ones encoding type 1 fimbriae (fimC), iron uptake-related (iroN, irp2, iucD, and fyuA), toxins (lt, st, stx1, stx2, and vat), and other factors (tsh, hlyF, ompT, and iss). Twenty-eight strains were found to be O1 (2.0%), O18 (3.0%), O20 (1.0%), O78 (19.8%), and O115 (2.0%) serotypes. The iroN (100%) gene was observed most frequently followed by ompT (94.1%), fimC (90.1%), hlyF (87.1%), iss (78.2%), iucD (73.3%), tsh (61.4%), fyuA (44.6%), and irp2 (43.6%). The strains were negative for all toxin genes except for vat (10.9%). All the strains were classified into 27 molecular pathotypes (MPs). The MP25, MP19, and MP10 pathotypes possessing iroN-fimC-ompT-hlyF-iucD-tsh-iss-irp2-fyuA (22.8%), iroN-fimC-ompT-hlyF-iucD-tsh-iss (21.8%), and iroN-fimC-ompT-hlyF-iss (11.9%) genotypes, respectively, were predominant. Redundancy of iron uptake-related genes was clearly observed and some strains were associated with higher mortality than others. Therefore, strains with the predominant genotypes can be used for diagnosis and vaccine.  相似文献   

9.
Avian pathogenic Escherichia coli (APEC) causes economically significant infections in poultry. The genetic diversity of APEC and phylogenetic relationships within and between APEC and other pathogenic E. coli are not yet well understood. We used multilocus sequence typing (MLST), PCR-based phylogrouping and virulence genotyping to analyse 75 avian E. coli strains, including 55 isolated from outbreaks of colisepticaemia and 20 from healthy chickens. Isolates were collected from 42 commercial layer and broiler chicken farms in Sri Lanka. MLST identified 61 sequence types (ST) with 44 being novel. The most frequent ST, ST48, was represented by only six isolates followed by ST117 with four isolates. Phylogenetic clusters based on MLST sequences were mostly comparable to phylogrouping by PCR and MLST further differentiated phylogroups B1 and D into two subgroups. Genotyping of 16 APEC associated virulence genes found that 27 of the clinical isolates and one isolate from a healthy chicken belonged to highly virulent genotype according to previously established classification schemes. We found that a combination of four genes, ompT, hlyF, iroN and papC, gave a comparable prediction to that of using five and nine genes by other studies. Four STs (ST10, ST48, ST117 and ST2016) contained APEC isolates from this study and human UPEC isolates reported by others, suggesting that these STs are potentially zoonotic. Our results enhanced the understanding of APEC population structure and virulence association.  相似文献   

10.
The aim of this study was to demonstrate and assess C-reactive protein (CRP) changes in dogs with induced bacterial cystitis with or without antibiotics. We also evaluated availability of CRP levels to serve as an indicator for monitoring or diagnosing bacterial cystitis. Serial CRP concentrations in dogs with induced bacterial cystitis were higher than those of controls (p < 0.001). CRP concentrations peaked on day 7 and gradually decreased thereafter. In the treatment group, CRP concentrations decreased after medication compared to the untreated group (p = 0.032). CRP levels had a linear correlation with urine white blood cell counts among all groups (r = 0.837, p < 0.001, n = 140). Compared to the negative urine culture group, dogs with positive urine culture results had higher CRP concentrations (median 43.8 mg/L vs. 5.9 mg/L; p < 0.001). Area under the receiver operating characteristic curve was 0.955; when cut-off value was 12.2 mg/L, CRP measurements were found to have a sensitivity of 92.3% and specificity of 86.4%. This result indicates that rapid increases of CRP occurred after inducing bacterial cystitis and CRP may be a useful indicator for monitoring or diagnosing canine bacterial cystitis together with sediment urinalysis and urine bacterial culture.  相似文献   

11.
Escherichia coli is a natural colonizer of the urogenital mucosa of healthy females; however it is one of the pathogens associated to reproductive failures in cows and sows. A better knowledge about the characteristics of native E. coli will allow us to differentiate them from pathogenic strains. Ninety autochthonous isolates from the reproductive tract of sows and cows were characterized to determine the phylogenetic profile, antibiotic resistance and virulence factors; also, comparisons between different breeding systems were performed. Vaginal colonization of E. coli was statistically higher in cows (57.5%) than sows (23.8%), and most isolates belonged to the phylogenetic group A: 79.69 and 80.77%, respectively; moreover phylo-groups B1 (12.5 and 11.54%) and D (7.81 and 7.69%) were significantly lower; however, none was classified as B2. Positive associations between virulence factors and group D were found. Isolates with antimicrobial susceptibility were associated with group A and the MDR (Multiple Drug Resistance) was related to the porcine source. These results contribute to the knowledge of extra-intestinal E. coli populations; which could affect the reproductive performance of females.  相似文献   

12.
This study was conducted to characterize the Escherichia coli isolates from colisepticemic Japanese quails. One hundred and nine E. coli were isolated in pure culture from heart blood of dead Japanese quails. The sampled birds were originated from four different farms. Antibiotic resistance pattern of E. coli isolates were determined against nine antibacterial agents. Phylotype and virulence genes of the isolates were detected by polymerase chain reaction. By disc diffusion method, all of the isolates showed resistance to three or more antibiotics, and 19 different patterns of multiple drug resistance were observed. Phylotyping of the most prevalent multiple drug-resistant isolates revealed that they mostly belonged to phylogroups A (A1 subgroup). The E. coli isolates belong to four phylogenetic groups: A (55.0%), B1 (18.3%), B2 (17.4%), and D (9.2%). Eighty-nine (81.7%) isolates were distributed in five phylogenetic subgroups including 22 (20.2%) in A0, 38 (34.9%) in A1, 19 (17.4%) in B23, 7 (6.4%) in D1, and 3 (2.8%) in D2. The examined E. coli isolates exhibit at least one of the virulence genes tested, whereas three most prevalent genes were crl (94.5%), fimH (89.0%), and iutA (51.4%), respectively. The genetic marker for Afa (afaI B-C), S (sfa/focD-E), and P (papE-F) fimbriae were found in one, four, and ten isolates, respectively. Thirteen different combinations of virulence gene were observed, where combination of crl and fimH genes was the most prevalent pattern. None of the isolates contained the ipaH, stx1, stx2, and eaeA genetic markers. In conclusion, E. coli strains could be considered as a causative agent of mortality in quail farms. In conclusion, E. coli isolates from colisepticemic quails are distributed in different phylogroups, are resistant to combinations of antibiotic agents, and contain several virulence genes.  相似文献   

13.
This study determined the antimicrobial resistance profiles of Escherichia coli isolates from dogs with a presumptive diagnosis of urinary tract infection (UTI). Urine samples from 201 dogs with UTI diagnosed through clinical examination and urinalysis were processed for isolation of Escherichia coli. Colonies from pure cultures were identified by biochemical reactions (n=114) and were tested for susceptibility to 18 antimicrobials. The two most frequent antimicrobials showing resistance in Urinary E. coli isolates were oxytetracycline and ampicillin. Among the resistant isolates, 17 resistance patterns were observed, with 12 patterns involving multidrug resistance (MDR). Of the 69 tetracycline-resistant E. coli isolates, tet(B) was the predominant resistance determinant and was detected in 50.9% of the isolates, whereas the remaining 25.5% isolates carried the tet(A) determinant. Most ampicillin and/or amoxicillin-resistant E. coli isolates carried blaTEM-1 genes. Class 1 integrons were prevalent (28.9%) and contained previously described gene cassettes that are implicated primarily in resistance to aminoglycosides and trimethoprim (dfrA1, dfrA17-aadA5). Of the 44 quinolone-resistant E. coli isolates, 38 were resistant to nalidixic acid, and 6 were resistant to nalidixic acid, ciprofloxacin and enrofloxacin. Chromosomal point mutations were found in the GyrA (Ser83Leu) and ParC (Ser80Ile) genes. Furthermore, the aminoglycoside resistance gene aacC2, the chloramphenicol resistant gene cmlA and the florfenicol resistant gene floR were also identified. This study revealed an alarming rate of antimicrobial resistance among E. coli isolates from dogs with UTIs.  相似文献   

14.
The prevalence and patterns of antimicrobial susceptibility of fecal Escherichia coli, Salmonella spp., extended β-lactamase producing E. coli (ESBL-E. coli), methicillin-resistant Staphylococcus aureus (MRSA), and methicillin-resistant Staphylococcus pseudintermedius (MRSP) were determined for healthy dogs (n = 188) and cats (n = 39) from veterinary hospitals in southern Ontario that had not had recent exposure to antimicrobials. The prevalence of antimicrobial resistance in E. coli was as follows: streptomycin (dogs — 17%, cats — 2%), ampicillin (dogs — 13%, cats — 4%), cephalothin (dogs — 13%, cats — < 1%), and tetracycline (dogs — 11%, cats — 2%). Eleven percent of dogs and 15% of cats had isolates that were resistant to at least 2 antimicrobials. Cephamycinase (CMY)-2 producing E. coli was cultured from 2 dogs. No Salmonella spp., ESBL-E. coli, MRSA, or MRSP isolates were recovered. The observed prevalence of resistance in commensal E. coli from this population was lower than that previously reported in companion animals, but a small percentage of dogs may be a reservoir for CMY-2 E. coli.  相似文献   

15.
Verocytotoxic Escherichia (E.) coli strains are responsible for swine oedema disease, which is an enterotoxaemia that causes economic losses in the pig industry. The production of a vaccine for oral administration in transgenic seeds could be an efficient system to stimulate local immunity. This study was conducted to transform tobacco plants for the seed-specific expression of antigenic proteins from a porcine verocytotoxic E. coli strain. Parameters related to an immunological response and possible adverse effects on the oral administration of obtained tobacco seeds were evaluated in a mouse model. Tobacco was transformed via Agrobacteium tumefaciens with chimeric constructs containing structural parts of the major subunit FedA of the F18 adhesive fimbriae and VT2e B-subunit genes under control of a seed specific GLOB promoter. We showed that the foreign Vt2e-B and F18 genes were stably accumulated in storage tissue by the immunostaining method. In addition, Balb-C mice receiving transgenic tobacco seeds via the oral route showed a significant increase in IgA-positive plasma cell presence in tunica propria when compared to the control group with no observed adverse effects. Our findings encourage future studies focusing on swine for evaluation of the protective effects of transformed tobacco seeds against E. coli infection.  相似文献   

16.
The prevalence, virulence potential, and antibiotic resistance of ophthalmic Staphylococcus pseudintermedius (SP) isolated from dogs were examined. Sixty-seven Staphylococcus species were isolated from ophthalmic samples and surveyed for species-specific sequences in the Staphylococcus intermedius group (SIG) nuclease gene (SInuc), exfoliative toxin gene for SIG (siet), and antibiotic resistance genes (blaZ and mecA). PCR-restriction fragment length polymorphism analysis of the pta gene was also performed. Fifty isolates were identified as SIG strains, all of which were found to be SP. The blaZ gene was detected in 42 of the 50 SP strains and mecA gene was observed in 18 of the 50 SP strains. The 50 SP strains were most susceptible to amoxicillin/clavulanic acid (94%) and chlorampenicol (70%), and highly resistant to tetracycline (94%) and penicillin (92%). It was also found that 16 (88.9%) mecA-positive SP strains were resistant to oxacillin, tetracycline and penicillin. All mecA-positive SP were resistant to more than four of the eight tested antibiotics and therefore considered SP with multi-drug resistance (MDR). Our results indicate a high prevalence of antibiotic resistance genes in ophthalmic SP along with a close relationship between MDR SP strains and the mecA gene. Based on our findings, judicious administration of antibiotics to companion dogs is necessary.  相似文献   

17.
The aim of this study was to compare the prevalence of virulence genes in 158 Escherichia coli strains isolated from 51 clinical cases of UTIs, 52 of pyometra and from 55 fecal samples from healthy dogs by PCR. papC was found in 12 (23.5%) strains isolated from UTIs, 19 (36.5%) from pyometra and 10 (18.2%) from feces. papGII was observed in 3 (5.8%) strains from pyometra, and papGIII in 10 (19.6%) from UTIs, 15 (28.8%) from pyometra and 9 (16.4%) from feces. sfaS was detected in 22 (43.1%) strains from UTIs, 24 (46.1%) from pyometra and 19 (34.5%) from feces. hlyA was observed in 17 (33.3%) strains from UTIs, 18 (34.6%) from pyometra and 7 (12.7%) from feces, while cnf-1 was detected in 11 (21.6%) from UTIs, 21 (40.4%) from pyometra and 9 (16.4%) from feces. iucD was observed in 12 (23.5%) strains from UTIs, 9 (17.3%) from pyometra and 1 (1.8%) from feces. usp was found 17 (33.3%) isolates from UTIs and 36 (69.9%) from pyometra.  相似文献   

18.
Virulence factors are associated with the capacity of E. coli strains to cause intestinal and extraintestinal infections. Thirty one E. coli isolates were obtained from heart blood or internal organs of septicemic calves. The O serogroups of isolates were determined. PCR assays were performed to determine the phylogenetic groups and presence of specific virulence genes. Fourteen (45.16%) isolates belonged to seven O serogroups (O8, O15, O20, O45, O78, O101 and O103) and 17 (54.83%) isolates were O-nontypeable. E. coli isolates fall into three phylogenetic groups included 15 isolates belonged to B1, 9 to A and 7 to D phylogenetic groups. Nineteen (61.29%) isolates exhibited at least one of the virulence genes. F17 family (5 isolates f17b, 3 isolates f17c, 1 isolate f17a) genes and aerobactin encoding gene of iucD (5 isolates) were the two most prevalent virulence genes. Three isolates were positive for cnf2 and cdtIII genes in combination and they were O-nontypeable. AfaE-VIII, CS31A gene (clpG) and hemolysin encoding gene (hly) were detected in 3, 4 and 3 isolates respectively. None of the isolates contained the ipaH sequences and the genes encoding fimbria (F5, F41, S, P), AfaI adesin, toxins (LT-I, ST-I, SLT-I, SLT-II, CNF1 and CDT-IV) and intimin.  相似文献   

19.
《Veterinary microbiology》1998,61(3):191-197
The attachment to fully characterized primary rumen epithelial cell cultures of Escherichia coli strains isolated from different animal species and expressing F1–F4 or F17 fimbriae was examined. As the cell cultures contained stratified (keratinized) and non-stratified (non-keratinized) cells which grew either confluently or non-confluently, the strength of attachment of the different bacterial strains was assessed in relation to the differentiation state of the cells. Thus, strains having F1 fimbriae attached to all types of cultured cells, while strains with F2 and F3 fimbriae did not bind at all. E. coli strains having F4 or F17 fimbrae attached only to non-keratinized cells, particularly to confluent areas. As membrane glycosylation is known to change with differentiation (keratinization), our results suggest that the attachment of fimbriated E. coli strains which were capable of binding to rumen cells was more likely to be dependent on differentiation than the host specificity of the bacteria.  相似文献   

20.

Background

The bacterial genus Staphylococcus consists of many species that causes infections in pet animals. Antimicrobial resistant staphylococci cause infections that are difficult to treat and they are important from the point of one health perspective. The aim of this study was to determine the prevalence of methicillin-resistant Staphylococcus (MRS) species, including methicillin-resistant S. aureus (MRSA) in diseased pet animals (Group A) and kennel dogs (Group B) in Lithuania and to characterize the isolates according to their antimicrobial resistance.

Results

Twenty-one MRS isolates were obtained from 395 clinical samples (5.3 %; CI 95 % 3.5-8.0) of Group A animals. Sixteen, four and one isolates were from dogs, cats and a pet rabbit, respectively. The mecA gene was present in 20 isolates, whereas one isolate was positive for the mecC gene. Twenty-one MRS isolates (20.0 %; CI 95 % 13.5-28.6) were obtained from the vagina of female dogs (n = 105) (Group B). All isolates carried the mecA gene. Twelve MRS species were isolated of which S. pseudintermedius was the most common (18/42) followed by S. haemolyticus (8/42) and S. lentus (4/42). MRSA was not found. All MRS strains were susceptible to vancomycin, linezolid, daptomycin and quinupristin/dalfopristin. Resistance to tetracycline (16/21), clindamycin (15/21) and erythromycin (14/21) was the most common types of resistance in Group A animals. Three isolates also demonstrated resistance to rifampin. Resistance toward gentamicin (16/21), ciprofloxacin (15/21), macrolides (15/21) and tetracycline (12/21) was the most common in kennel dogs (Group B). The most common genes encoding resistance to antimicrobials (excluding beta-lactams) in isolates from Group A pets were tetK (21/42), aph(3′)-IIIa (11/42) and aac(6'')-Ie-aph(2'''')-Ia (9/42).

Conclusions

A wide range of MRS species were found in pet animals in Lithuania. MRSA was not found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号