首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
转录因子CBF及其抗寒作用机制   总被引:3,自引:1,他引:2  
从植物的抗寒方面综述了转录因子CBF(CRT/DRE-binding factor)的发现、分类、结构、在植物抗寒过程中发挥作用的分子机制,并介绍了调控CBF和受CBF调控的其他分子的信息,较为系统地归纳了CBF研究的最新进展。低温是影响植物生长、生产性能的重要因素之一。随着分子生物学的发展,植物抗逆分子机制成为当前植物学研究的一个热点。转录因子是转录起始过程中RNA聚合酶所需的辅助因子。真核生物RNA聚合酶自身无法启动基因转录,只有当转录因子结合在其识别的DNA序列上后,基因才开始转录。转录因子CBF广泛存在于各种植物中,可以识别COR基因中的CRT/DRE(C repeat/dehydration responsive element)元件,从而启动COR基因转录,是植物抗逆过程中一个重要的调节因子。  相似文献   

2.
向白菊  李成君  张健  罗艺  蒋安 《草业科学》2012,29(9):1374-1378
本研究以拟南芥(Arabidopsis thaliana)叶片为材料,用PCR方法成功地克隆了转录因子CBF1基因,并初步对其进行了序列分析,构建了植物表达载体,然后通过农杆菌介导法将CBF1基因转入饲草玉米SAUMZ1(Zea mays)。PCR分子检测表明,外源基因已经插入到玉米草基因组中。不同低温胁迫处理后,转基因植株比对照植株的相对电导率含量低,进一步说明转入CBF1基因后增强了饲草玉米SAUMZ1的抗寒性。  相似文献   

3.
王舟  刘建秀 《草业学报》2011,20(1):222-236
草坪草和牧草是可持续农业的重要组成部分,但它们的生存力、生物量及产量的增长往往受限于各种逆境胁迫因素。作为受多基因控制的数量性状,抗逆性分子基础的研究显得尤为重要。转录因子调控着与逆境相关的多个下游靶基因的表达。其中,DREB/CBF类转录因子能与脱水应答顺式作用元件结合,由DREB1/CBF和DREB2两个亚家族成员组成。前者受低温诱导,后者受干旱诱导。近年来草坪草和牧草的遗传转化技术突飞猛进,通过转化DREB/CBF类转录因子来改良草种的抗逆性是今后草业育种工作的一个重要发展方向。本研究综述了该类转录因子的结构特征及其在植物逆境信号转导中的作用,并对它们在草坪草和牧草抗逆基因工程中的应用作了相关介绍。  相似文献   

4.
CBF(C-repeat binding factor)是一类与植物抗逆应答相关的转录因子。利用RT-PCR和RACE技术克隆桑树CBF1基因的全长cDNA序列,命名为MCBF1(GenBank登录号:JX186750)。该基因序列全长1 134 bp,包括693 bp的开放阅读框,87bp的5'端非翻译区和354 bp的3'端非翻译区;预测其编码的氨基酸序列具有保守的AP2结构域,且该结构域的两端拥有CBF家族特有的短多肽序列PKK/RPAGRxKFxETRHP和DSAWR,与其它植物CBF1的序列相似性较高;基于CBF1序列的系统进化树显示桑树与柑橘(Citrus jambhiri)、垂枝桦(Betula pendula)和切花月季(Rosa hybrid cultivar)的亲缘关系较近。将构建的pET28a-MCBF1原核表达载体转化大肠杆菌BL21后,诱导表达的MCBF1重组蛋白分子质量大小与预测值一致。半定量RT-PCR分析MCBF1基因在未经过低温处理的对照桑苗幼叶中无表达,而在低温处理后的桑苗幼叶中有表达,其中低温处理4 d后的表达量最高。克隆的MCBF1基因编码蛋白质具有典型的CBF家族结构域,并具有低温诱导表达的特点,推测其在桑树对低温的耐受性中发挥作用。  相似文献   

5.
研究证明,转录因子广泛参与植物的生长发育过程并响应多种生物/非生物胁迫信号途径。低温胁迫可导致紫花苜蓿(Medicao sativa)减产、越冬率降低以及生产年限缩短。利用新一代高通量转录组测序技术,本研究对4℃低温胁迫下紫花苜蓿中响应低温胁迫的转录因子基因进行了鉴定,并对其表达情况进行分析,结果表明,转录组测序共获得78 925条Unigene序列和3 448个差异表达基因。其中,从3 448个差异表达基因中共鉴定出43个转录因子家族,共251个基因被显著地诱导表达。不同转录因子家族基因受低温胁迫诱导表达不同。本研究有助于在整体水平加深了解紫花苜蓿转录因子表达特性,为进一步研究这些响应低温胁迫的转录因子的功能提供参考。  相似文献   

6.
NAC类家族的基因是植物特有的转录因子,并且它在植物的生长发育中发挥着重要的作用。本研究以结缕草为研究材料,对结缕草转录组数据库利用local blast的办法克隆出1个NAC类转录因子。为深入探讨和研究NAC类转录因子在植物逆境生理上的作用奠定基础。通过与水稻的OsNACs家族成员进行进化树分析,结合蛋白分析,QRT-PCR等的方式探索其生物学功能。实验结果表明,该基因长度为1496 bp,包含1个完整开放阅读框(ORF),长度为1332 bp,编码449个氨基酸,该蛋白含有1个NAM结构域。与水稻的NAC类转录因子家族的系统进化树对比发现,它与OsNAC036近缘性最高,因此将该基因命名为ZjNAC036。QRT-PCR结果显示,该基因在干旱情况下表达量呈上升趋势,并且干旱处理8 h的时候,差异倍数最大,达到了50倍左右,而在盐胁迫、低温胁迫下没有规律性变化。这表明ZjNAC036在干旱逆境生理上可能有重要的作用,而在高盐及寒冷的逆境生理方面可能作用不大。  相似文献   

7.
植物低温诱导基因及其产物的生物学功能   总被引:2,自引:0,他引:2  
植物在适应低温胁迫的过程中,体内将会发生一系列生理生化反应,多种基因得以诱导表达,这些基因的表达在时空上是有序发生的,并相互联系形成了低温应答的分子机制。为促进我国桑树抗寒分子育种的研究,结合植物的抗冻特性和桑树低温胁迫反应,对植物的3种主要低温诱导蛋白(抗冻蛋白、胚胎后期富集蛋白和转录因子)的研究进展进行了综述,并以此阐述了植物抗寒抗冻特性和植物低温应答的分子机制。  相似文献   

8.
9.
10.
为探讨木豆[Cajanus cajan (L.) Millsp.]响应低温胁迫的机制,本研究以1份耐低温(MD)和1份低温敏感(QZ)木豆为试验材料,经4℃低温胁迫处理后进行RNA-seq测序分析,结果表明:2份木豆RNA-seq获得了丰富的转录本信息,对转录因子和差异表达基因的基因功能进行注释。木豆响应响应低温胁迫的转录因子主要包括MYB,AP2-EREBP等;在两份材料中,GO分析发现DEGs注释在细胞组成中“膜”和生物学过程中“细胞过程”,KEGG分析均显著富集在“核糖体”通路中,而MD中还显著富集在植物激素信号转导、昼夜节律-植物等通路。通过两份材料对比,在MD材料中发现特有与耐低温相关的150个DEGs,主要为α-1,4-葡萄糖苷酶,参与碳水化合物、脂质代谢等途径。还筛选37个与耐寒相关重要差异表达基因和14条通路,并对10个DEGs进行qRT-PCR验证。本文从分子水平阐述了木豆低温胁迫下的响应机制,为未来木豆的抗寒育种奠定了理论基础。  相似文献   

11.
为研究冷诱导转录因子CBF1(C-repeat-binding-factor)基因对我国优良豆科牧草紫花苜蓿的抗寒性改良作用,本实验以拟南芥基因组DNA为模板,利用PCR方法克隆得到了冷诱导转录因子AtCBF1基因,测序结果表明所克隆的DNA片段长度为642 bp, 将该序列与GenBank上的CBF1基因序列进行DANMAN序列比较分析,同源性可达99.84%。在此基础上成功构建了含有AtCBF1基因的植物表达载体pBI121-CBF1,并采用根癌农杆菌介导法对紫花苜蓿进行了遗传转化,获得了经卡那霉素筛选的抗性转化植株,进一步经PCR和RT-PCR检测,得到了650 bp左右的电泳条带,表明AtCBF1基因已在紫花苜蓿中得到表达。这为选育紫花苜蓿抗寒新品种奠定了良好的基础。  相似文献   

12.
以载体pBI121为基础,经SmaI和BamHI单酶切后,构建了植物表达载体pBI121-MAPK,并通过农杆菌介导采用叶盘转化法将其转入烟草中,经卡那霉素抗性筛选,获得转基因抗性植株。经PCR检测表明pBI121-MAPK已整和到烟草基因组中。  相似文献   

13.
aFGF植物表达载体构建及转化紫花苜蓿的初步研究   总被引:3,自引:2,他引:1  
主要将aFGF基因按照植物偏爱的密码子进行基因优化,同时加上信号肽、6-组氨酸标签及凝血酶切割因子,合成全基因,再将基因插入到改造的TΩ4AB质粒中,将aFGF基因和质粒上的增强子、启动子、Ω序列及ployA加尾序列双酶切,命名为TΩ4AB-aF,将TΩ4AB-aF插入到pBI121载体中命名为pBI121-TΩ4AB-aF。利用三亲融合法将pBI121-TΩ4AB-aF转入到农杆菌菌株LBA4404中,转化苜蓿。转基因苗用卡那霉素进行筛选;并对抗性苗进行PCR、RT-PCR、Western Blot检测。结果表明,aFGF在苜蓿中得到表达。为苜蓿作为植物生物反应器奠定理论基础。  相似文献   

14.
为了有效预防小反刍兽疫,试验以pBI121为载体,PPRV-H、PPRV-F为目的基因,并插入绿色荧光蛋白(GFP)基因、MAR序列,构建5种小反刍兽疫病毒(PPRV)苜蓿表达载体。结果表明:成功构建小反刍兽疫表达载体,再将表达载体转入苜蓿,饲喂动物,选择其中免疫效果最好的表达载体,为该病的预防工作提供有效的技术支持。  相似文献   

15.
根据已经克隆得到的东方山羊豆赤霉素受体(GoGID)基因,扩增编码区cDNA.以pBI121为基础载体,采用酶切连接法,构建植物超表达载体pBI121-GoGID.酶切鉴定表明:目的基因已经正确插入载体中,超表达载体构建成功.采用CaCl2冻融法将重组载体转入农杆菌菌株中.以叶片为外植体,采用农杆菌介导的愈伤组织培养法,转化紫花苜蓿(Medicage sativa),得到抗性苗.对载体携带的nptⅡ基因、GUS基因进行PCR检测均成阳性,表明目的基因已成功导入紫花苜蓿基因组中.同时对转基因植株进行Southern-blot及RT-PCR检测,并均得到目的条带.本研究为进一步分析GoGID基因对紫花苜蓿生物量影响奠定了基础.  相似文献   

16.
将钙依赖蛋白激酶(CDPK)基因插入到植物表达载体pBI121上,构建成特异性表达载体pBI121-CDPK,并采用农杆菌介导法将其转化进入拟南芥Arabidopsis thaliana Columbia生态型品种中,获得了卡那霉素筛选的抗性植株,通过PCR扩增验证,拟南芥基因组中含有此抗性基因.  相似文献   

17.
采用RT-PCR方法从长穗偃麦草(Elytrigia elongata)中克隆得到高亲和K+转运蛋白基因,命名为EeHKT1;4,全长cDNA序列为1 977bp,开放阅读框1 722bp,编码573个氨基酸,与一粒小麦(Triticum monococcum)TmHKT1;4-A2的氨基酸同源性为94%。系统进化树分析结果显示,EeHKT1;4与单子叶植物HKT1;4亲缘关系较近。利用In-Fusion技术,成功构建了pBI121-35SEeHKT1;4-Nos植物表达载体,为长穗偃麦草EeHKT1;4的耐盐功能鉴定奠定基础。  相似文献   

18.
AtPCS1基因表达载体构建与转化苜蓿的研究   总被引:1,自引:0,他引:1  
扩增拟南芥(Arabidopsis thaliana)螯合肤合成酶(AtPCS1)全长基因;构建AtPCS1植物表达载体pBI 121-AtPCS1,进一步转化农杆菌EHA105;利用转化的农杆菌EHA105侵染甘农一号苜蓿(Medicago satiua)叶片,经过80~100 d的筛选与培养,获得57株再生转基因植...  相似文献   

19.
植物耐热性受复杂而精细的调控。热诱导启动子能经济、高效的激活或关闭耐热调节途径关键基因的表达,在植物功能基因组研究与现代分子育种技术中起十分重要的作用。以紫花苜蓿耐热候选基因MsMBF1c的编码序列为基础,采用酶切连接的方法分离获得了其上游1748bp序列,生物信息学分析发现该区域具有HSE与GATA结合位点等2个与植物耐热调节相关的保守模体,此外还有5个ABA应答元件(ABRE、MYB2、MIC2、CBF与DPBF)和2个MYB蛋白结合位点,说明MsMBF1c除了参与植物耐热性调节外,还可能参与其他抗逆性调节。构建pBI121-MsMBF1c::GUS双元载体转化野生型拟南芥,荧光定量分析热诱导后的转基因植物中GUS与AtMBF1c基因的表达发现其分别上调了5.4与4.8倍,并且高温诱导下转基因植株的组织化学染色分析同样证明MsMBF1c启动子显著受高温诱导。分离获得紫花苜蓿MsMBF1c启动子序列并转化拟南芥,并且从生物信息学、组织化学染色与基因表达等方面验证该序列能显著被高温诱导,为探讨紫花苜蓿耐热调控机制及通过分子生物技术改善紫花苜蓿耐热性提供理论支撑,最终为培育适应南方高温气候条件的紫花苜蓿新品种提供技术储备。  相似文献   

20.
WRKY转录因子是植物特有的转录因子,广泛参与植物对多种逆境胁迫的反应。但是对紫花苜蓿中WRKY转录因子的研究还较少。本研究从紫花苜蓿中克隆了一个WRKY I类转录因子MsWRKY33。该基因CDS全长1536 bp,编码512个氨基酸,结构分析显示MsWRKY33包括两个WRKY结构域和一个C2H2锌指结构(C-X4-C-X23-H-X-H),表明其属于WRKY I 族WRKY转录因子。亚细胞定位预测MsWRKY33蛋白定位在细胞核。MsWRKY33基因受盐、干旱和冷胁迫诱导,暗示基因可能参与了这些逆境胁迫的调控。构建原核表达载体pET-MsWRKY33, SDS-PAGE分析表明在大肠杆菌中表达了MsWRKY33蛋白。扩增MsWRKY33编码区cDNA,以pBI121为基础载体,构建植物超表达载体pBI121-MsWRKY33。采用农杆菌介导的愈伤组织培养法转化紫花苜蓿。利用nptⅡ基因引物和载体特异引物检测抗性苗呈阳性,表明目的基因已成功导入紫花苜蓿基因组中。qRT-PCR检测发现,MsWRKY33基因在转基因株系中得到增强表达。本研究为进一步探索WRKY转录因子基因在紫花苜蓿抗逆性调控中的作用奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号