首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increasing feed costs and the desire to improve environmental stewardship have stimulated renewed interest in improving feed efficiency of livestock, including that of US dairy herds. For instance, USDA cost projections for corn and soybean meal suggest a 20% increase over 2010 pricing for a 16% protein mixed dairy cow ration in 2011, which may lead to a reduction in cow numbers to maintain profitability of dairy production. Furthermore, an October 2010 study by The Innovation Center for US Dairy to assess the carbon footprint of fluid milk found that the efficiency of feed conversion is the single greatest factor contributing to variation in the carbon footprint because of its effects on methane release during enteric fermentation and from manure. Thus, we are conducting research in contemporary US Holsteins to identify cows most efficient at converting feed to milk in temperate climates using residual feed intake (RFI), a measure used successfully to identify the beef cattle most efficient at converting feed to gain. Residual feed intake is calculated as the difference between predicted and actual feed intake to support maintenance and production (e.g., growth in beef cattle, or milk in dairy cattle). Heritability estimates for RFI in dairy cattle reported in the literature range from 0.01 to 0.38. Selection for a decreased RFI phenotype can reduce feed intake, methane production, nutrient losses in manure, and visceral organ weights substantially in beef cattle. We have estimated RFI during early lactation (i.e., to 90 d in milk) in the Beltsville Agricultural Research Center Holstein herd and observed a mean difference of 3.7 kg/d (P < 0.0001) in actual DMI between the efficient and inefficient groups (±0.5 SD from the mean RFI of 0), with no evidence of differences (P > 0.20) in mean BW, ADG, or energy-corrected milk exhibited between the 2 groups. These results indicate promise for using RFI in dairy cattle to improve feed conversion to milk. Previous and current research on the use of RFI in lactating dairy cattle are discussed, as well as opportunities to improve production efficiency of dairy cattle using RFI for milk production.  相似文献   

2.
随着分子遗传学的发展,已经鉴定出了影响剩余采食量(RFI)的大量数量性状位点和候选基因。有丝分裂原活化蛋白3激酶5(MAP3K5),也称凋亡信号调节激酶1(ASK1),属于MAPK超家族基因之一。目前,已有细胞外信号调节蛋白激酶(ERK)、c-Jun N-末端激酶(JNK)和p38丝裂原激活蛋白激酶(p38-MAPK)这3个MAPK家族成员在哺乳动物细胞中被克隆和鉴定,其主要作用机制是介导3条MAPKs信号通路,从而影响家畜的生长、体型及产奶性状等。课题组在前期对RFI的研究中筛选出与牛剩余采食量相关的MAP3K5基因,但其功能作用尚不明确,笔者在此基础上回顾了该基因的结构、生物学功能,概述了该基因在主要畜禽采食量变异及人类肥胖表型中的功能及作用,并从遗传学的角度重点分析了MAP3K5基因在畜禽RFI表型调控中的可能机制。通过对MAP3K5基因在畜禽RFI表型调控中的研究进展进行综述,期望为后期深入开展MAP3K5基因在畜禽采食量性状调控中的分子机制研究提供思路;对于其他可能通过MAP3K5基因影响畜禽表型的因素(如肠道菌群)有待进一步探讨。  相似文献   

3.
随着分子遗传学的发展,已经鉴定出了影响剩余采食量(RFI)的大量数量性状位点和候选基因。有丝分裂原活化蛋白3激酶5(MAP3K5),也称凋亡信号调节激酶1(ASK1),属于MAPK超家族基因之一。目前,已有细胞外信号调节蛋白激酶(ERK)、c-Jun N-末端激酶(JNK)和p38丝裂原激活蛋白激酶(p38-MAPK)这3个MAPK家族成员在哺乳动物细胞中被克隆和鉴定,其主要作用机制是介导3条MAPKs信号通路,从而影响家畜的生长、体型及产奶性状等。课题组在前期对RFI的研究中筛选出与牛剩余采食量相关的MAP3K5基因,但其功能作用尚不明确,笔者在此基础上回顾了该基因的结构、生物学功能,概述了该基因在主要畜禽采食量变异及人类肥胖表型中的功能及作用,并从遗传学的角度重点分析了MAP3K5基因在畜禽RFI表型调控中的可能机制。通过对MAP3K5基因在畜禽RFI表型调控中的研究进展进行综述,期望为后期深入开展MAP3K5基因在畜禽采食量性状调控中的分子机制研究提供思路;对于其他可能通过MAP3K5基因影响畜禽表型的因素(如肠道菌群)有待进一步探讨。  相似文献   

4.
The goal of this bibliographical study was to provide information about residual feed intake (RFI), a new criterion used in the selection of beef cattle for growth rate, food ingestion, and feed efficiency. RFI is calculated as the difference between real consumption and the quantity of food an animal is expected to eat based on its mean live weight and rate of weight gain. In studies of RFI, many speculations are made among researchers about the reliability of this criterion. However, there is a high genetic correlation with characteristics related to post-weaning consumption and maturity, indicating that the biological processes that regulate consumption and efficiency in young animals are similar to the processes that regulate consumption and efficiency in animals of greater age. In contrast to feed conversion, selection based on RFI seems to select for lower rates of consumption and lower animal maintenance requirements without changing adult weight or weight gain. Therefore, we conclude that the data indicate that there are extraordinary benefits to be gained from changing the goals of selection from increased weight gain to improved nutritional efficiency. Given the importance of animal production for economic development in Brazil choosing the best selection goals for livestock improvement is essential. To include an index of feed efficiency in future goals would be desirable, and RFI may play a part in this if economic methods of implementation can be developed.  相似文献   

5.
Feed intake and feed efficiency are economically important traits in beef cattle because feed is the greatest variable cost in production. Feed efficiency can be measured as feed conversion ratio (FCR, intake per unit gain) or residual feed intake (RFI, measured as DMI corrected for BW and growth rate, and sometimes a measure of body composition, usually carcass fatness, RFI(bf)). The goal of this study was to fine map QTL for these traits in beef cattle using 2,194 markers on 24 autosomes. The animals used were from 20 half-sib families originating from Angus, Charolais, and University of Alberta Hybrid bulls. A mixed model with random sire and fixed QTL effect nested within sire was used to test each location (cM) along the chromosomes. Threshold levels were determined at the chromosome and genome levels using 20,000 permutations. In total, 4 QTL exceeded the genome-wise threshold of P < 0.001, 3 exceeded at P < 0.01, 17 at P < 0.05, and 30 achieved significance at the chromosome-wise threshold level (at least P < 0.05). No QTL were detected on BTA 8, 16, and 27 above the 5% chromosome-wise significance threshold for any of the traits. Nineteen chromosomes contained RFI QTL significant at the chromosome-wise level. The RFI(bf) QTL results were generally similar to those of RFI, the positions being similar, but occasionally differing in the level of significance. Compared with RFI, fewer QTL were detected for both FCR and DMI, 12 and 4 QTL, respectively, at the genome-wise thresholds. Some chromosomes contained FCR QTL, but not RFI QTL, but all DMI QTL were on chromosomes where RFI QTL were detected. The most significant QTL for RFI was located on BTA 3 at 82 cM (P = 7.60 x 10(-5)), for FCR on BTA 24 at 59 cM (P = 0.0002), and for DMI on BTA 7 at 54 cM (P = 1.38 x 10(-5)). The RFI QTL that showed the most consistent results with previous RFI QTL mapping studies were on BTA 1, 7, 18, and 19. The identification of these QTL provides a starting point to identify genes affecting feed intake and efficiency for use in marker-assisted selection and management.  相似文献   

6.
剩余采食量(RFI)是实际采食量与预测采食量的差值,是衡量肉牛饲料效率的新指标。文章简要介绍了RFI的概念、测定方法、应用RFI的益处,以及影响肉牛RFI的一些生理因素,包括采食量、消化率、体组织代谢、活动量、体温调节等。最后,文章讨论了RFI在肉牛生产实践中的应用。  相似文献   

7.
Most studies on feed efficiency in beef cattle have focused on performance in young animals despite the contribution of the cow herd to overall profitability of beef production systems. The objective of this study was to quantify, using a large data set, the genetic covariances between feed efficiency in growing animals measured in a performance-test station, and beef cow performance including fertility, survival, calving traits, BW, maternal weaning weight, cow price, and cull cow carcass characteristics in commercial herds. Feed efficiency data were available on 2,605 purebred bulls from 1 test station. Records on cow performance were available on up to 94,936 crossbred beef cows. Genetic covariances were estimated using animal and animal-dam linear mixed models. Results showed that selection for feed efficiency, defined as feed conversion ratio (FCR) or residual BW gain (RG), improved maternal weaning weight as evidenced by the respective genetic correlations of -0.61 and 0.57. Despite residual feed intake (RFI) being phenotypically independent of BW, a negative genetic correlation existed between RFI and cow BW (-0.23; although the SE of 0.31 was large). None of the feed efficiency traits were correlated with fertility, calving difficulty, or perinatal mortality. However, genetic correlations estimated between age at first calving and FCR (-0.55 ± 0.14), Kleiber ratio (0.33 ± 0.15), RFI (-0.29 ± 0.14), residual BW gain (0.36 ± 0.15), and relative growth rate (0.37 ± 0.15) all suggest that selection for improved efficiency may delay the age at first calving, and we speculate, using information from other studies, that this may be due to a delay in the onset of puberty. Results from this study, based on the estimated genetic correlations, suggest that selection for improved feed efficiency will have no deleterious effect on cow performance traits with the exception of delaying the age at first calving.  相似文献   

8.
Discovery of epigenetic modifications associated with feed efficiency or other economically important traits would increase our understanding of the molecular mechanisms underlying these traits. In combination with known genetic markers, this would provide opportunity to improve genomic selection accuracy in cattle breeding programs. It would also allow cattle to be managed to improve favorable gene expression. The objective of this study was to identify variation in DNA methylation between beef cattle of differential pre-natal nutrition and divergent genetic potential for residual feed intake (RFI). Purebred Angus offspring with the genetic potential for either high (HRFI) or low (LRFI) RFI were prenatally exposed to either a restricted maternal diet of 0.5 kg/d average daily gain (ADG) or a moderate maternal diet of 0.7 kg/d ADG from 30 to 150 d of gestation. We performed DNA methylation analysis of differentially methylated regions (DMR) of imprinted genes (Insulin-like growth factor 2 (IGF2) DMR2, IGF2/H19 imprinting control region (ICR) and IGF2 receptor (IGF2R) DMR2) using post-natal samples of longissimus dorsi (LD) muscle taken from male and female calves at birth and weaning, and of LD muscle, semimembranosus (SM) muscle, and liver samples collected from steers at slaughter (17 months of age). Interestingly, for all three DMR investigated in liver, LRFI steers had higher levels of methylation than HRFI steers. In LD muscle, IGF2/H19 ICR methylation differences for heifers at birth were due to pre-natal diet, while for steers at birth they were mostly the result of genetic potential for RFI with LRFI steers again having higher levels of methylation than HRFI steers. While results from repeated measures analysis of DNA methylation in steers grouped by RFI revealed few differences, in steers grouped by diet, we found higher methylation levels of IGF2 DMR2 and IGF2R DMR2 in LD muscle of restricted diet steers at weaning and slaughter than at birth, as well as increased methylation in LD muscle of restricted diet steers compared with moderate diet steers at weaning and/or slaughter. Our results suggest that differential pre-natal nutrition, and divergent genetic potential for RFI, induces tissue- and sex-specific alterations in post-natal IGF2 and IGF2R methylation patterns and that these patterns can vary with age in Angus beef cattle.  相似文献   

9.
10.
Feed intake and efficiency of growth are economically important traits of beef cattle. This study determined the relationships of daily DMI, feed:gain ratio [F:G, which is the reciprocal of the efficiency of gain (G:F) and therefore increases as the efficiency of gain decreases and vice versa, residual feed intake (RFI), and partial efficiency of growth (efficiency of ADG, PEG) with growth and carcass merit of beef cattle. Residual feed intake was calculated from phenotypic regression (RFIp) or genetic regression (RFIg) of ADG and metabolic BW on DMI. An F1 half-sib pedigree file containing 28 sires, 321 dams, and 464 progeny produced from crosses between Alberta Hybrid cows and Angus, Charolais, or Alberta Hybrid bulls was used. Families averaged 20 progeny per sire (range = 3 to 56). Performance, ultrasound, and DMI data was available on all progeny, of which 381 had carcass data. Phenotypic and genetic parameters were obtained using SAS and ASREML software, respectively. Differences in RFIp and RFIg, respectively, between the most and least efficient steers (i.e., steers with the lowest PEG) were 5.59 and 6.84 kg of DM/d. Heritabilities for DMI, F:G, PEG, RFIp, and RFIg were 0.54 +/- 0.15, 0.41 +/- 0.15, 0.56 +/- 0.16, 0.21 +/- 0.12, and 0.42 +/- 0.15, respectively. The genetic (r = 0.92) and phenotypic (r = 0.97) correlations between RFIp and RFIg indicated that the 2 indices are very similar. Both indices of RFI were favorably correlated phenotypically (P < 0.001) and genetically with DMI, F:G, and PEG. Residual feed intake was tendentiously genetically correlated with ADG (r = 0.46 +/- 0.45) and metabolic BW (r = 0.27 +/- 0.33), albeit with high SE. Genetically, RFIg was independent of ADG and BW but showed a phenotypic correlation with ADG (r = -0.21; P < 0.05). Daily DMI was correlated genetically (r = 0.28) and phenotypically (r = 0.30) with F:G. Both DMI and F:G were strongly correlated with ADG (r > 0.50), but only DMI had strong genetic (r = 0.87 +/- 0.10) and phenotypic (r = 0.65) correlations with metabolic BW. Generally, the phenotypic and genetic correlations of RFI with carcass merit were not different from zero, except genetic correlations of RFI with ultrasound and carcass LM area and carcass lean yield and phenotypic correlations of RFI with backfat thickness (P < 0.01). Daily DMI had moderate to high phenotypic (P < 0.01) and genetic correlations with all the ultrasound and carcass traits. Depending on how RFI technology is applied, adjustment for body composition in addition to growth may be required to minimize the potential for correlated responses to selection in cattle.  相似文献   

11.
Residual feed intake (RFI) has been proposed as an index for determining beef cattle energetic efficiency. Although the relationship of RFI with feed conversion ratio (FCR) is well established, little is known about how RFI compares to other measures of efficiency. This study examined the phenotypic relationships among different measures of energetic efficiency with growth, feed intake, and ultrasound and carcass merit of hybrid cattle (n = 150). Dry matter intake, ME intake (MEI), ADG, metabolic weight (MWT), and FCR during the test averaged 10.29 kg/d (SD = 1.62), 1,185.45 kJ/(kg0.75 x d) (SD = 114.69), 1.42 kg/d (SD = 0.25), 86.67 kg0.75 (SD = 10.21), and 7.27 kg of DM/kg of gain (SD = 1.00), respectively. Residual feed intake averaged 0.00 kg/d and ranged from -2.25 kg/d (most efficient) to 2.61 kg/d (least efficient). Dry matter intake (r = 0.75), MEI (r = 0.83), and FCR (r = 0.62) were correlated with RFI (P < 0.001) and were higher for animals with high (>0.5 SD) RFI vs. those with medium (+/-0.5 SD) or low (<0.5 SD) RFI (P < 0.001). Partial efficiency of growth (PEG; energetic efficiency for ADG) was correlated with RFI (r = -0.89, P < 0.001) and was lower (P < 0.001) for high- vs. medium- or low-RFI animals. However, RFI was not related to ADG (r = -0.03), MWT (r = -0.02), relative growth rate (RGR; growth relative to instantaneous body size; r = -0.04), or Kleiber ratio (KR; ADG per unit of MWT; r = -0.004). Also, DMI was correlated (P < 0.01) with ADG (r = 0.66), MWT (r = 0.49), FCR (r = 0.49), PEG (r = -0.52), RGR (r = 0.18), and KR (r = 0.36). Additionally, FCR was correlated (P < 0.001) with ADG (r = -0.63), PEG (r = -0.83), RGR (r = -0.75), and KR (r = -0.73), but not with MWT (r = 0.07). Correlations of measures of efficiency with ultrasound or carcass traits generally were not different from zero except for correlations of RFI, FCR, and PEG, respectively, with backfat gain (r = 0.30, 0.20, and -0.30), ultrasound backfat (r = 0.19, 0.21, and -0.25), grade fat (r = 0.25, 0.19, and -0.27), lean meat yield (r = -0.22, -0.18, and 0.24), and yield grade (r = 0.28, 0.24, and -0.25). These phenotypic relationships indicate that, compared with other measures of energetic efficiency, RFI should have a greater potential to improve overall production efficiency and PEG above maintenance, and lead to minimal correlated changes in carcass merit without altering the growth and body size of different animals.  相似文献   

12.
Understanding the reasons why animals of similar performances have different feed requirements is important to increase profits for cattle producers and to decrease the environmental footprint of beef cattle production. This study was carried out aiming to identify the associations between residual feed intake (RFI) and animal performance, nutrient digestibility, and blood metabolites related to energy balance of young Nellore bulls during the finishing period. Animals previously classified as low (n?=?13) and high RFI (n?=?12), with average initial body weight of 398 kg and age of 503 days were used. Cattle were fed a high energy diet and were slaughtered when rib fat thickness measured by ultrasound between the 12th and 13th ribs reached the minimum of 4 mm. A completely randomized design was adopted, being data analyzed with a mixed model that included the random effect of slaughter group, the fixed effect of RFI class, and linear effect of the covariate feedlot time. No differences were found (p?>?0.10) between RFI classes for performance, dry matter, and nutrients intake. However, dry (p?=?0.0911) and organic matter (p?=?0.0876) digestibility tended to be lower, and digestibility of neutral detergent fiber corrected for ash and protein (p?=?0.0017), and total digestible nutrients (p?=?0.0657) were lower for high RFI animals, indicating lesser capacity of food utilization. Difference between low and high RFI animals was also found for blood cortisol at the end of the trial (p?=?0.0044), having low RFI animals lower cortisol concentrations. Differences in the ability to digest food can affect the efficiency of transforming feed into meat by Nellore cattle.  相似文献   

13.
Improvement in the utilization of feed in livestock is an important target of breeding and nutritional programs. Recent evidence indicates a potential association between feed efficiency and fecal cortisol metabolites, which could eventually be used as an indirect assessment of this trait. This evidence is more comprehensively evaluated in here with samples for plasma cortisol (PC; ng/ml) and fecal cortisol metabolites (FCM; ng/ml) collected more often during the entire finishing phase in beef steers. Individual daily feed intake of 112 steers fed a high-moisture corn-based and haylage diet was measured over 168 d. Body weight, blood and fecal samples were collected every 14 d and ultrasound measures of backfat thickness and longissimus muscle area were taken every 28 d. Four productive performance traits were calculated: daily dry matter intake (DMI), average daily gain (ADG), feed to gain ratio (F:G) and residual feed intake (RFI). At the end of the feedlot phase, steers were ranked according to RFI and samples were analyzed for PC and FCM from the 32 steers with greatest and 32 steers with lowest feed efficiency. In addition, a sub-group of 12 steers from each of these two groups with divergent feed efficiency were subjected to hourly blood sampling for 24 h. Less efficient steers had greater DMI, F:G and consumed 1.5 kg/d more DMI (P<0.05) than steers with improved feed efficiency. No differences (P>0.10) in PC over the 12 biweekly sampling periods between steers with divergent feed efficiency were observed. However, a trend toward significance between 19:00 and 02:00 h over the hourly sampling evaluation was noticed, with the sub-group of more feed efficient steers presenting higher levels of PC in this period of the day (P=0.08). On the other hand, FCM levels displayed a distinct pattern between RFI groups over the biweekly sampling period, with more efficient cattle presenting greater levels of these metabolites (P<0.05). This study reinforces the positive association between improved feed efficiency and FCM levels over the finishing phase; and the lack of association between feed efficiency and PC when single samples are collected every two weeks through a single jugular venipuncture performed after handling the cattle for sampling. Further studies to develop sampling protocols for assessing FCM as an indicator trait for feed efficiency are warranted, as well as, studies to understand the role of endogenous glucocorticoids in the performance of the bovine.  相似文献   

14.
Residual feed intake (RFI) is the difference between the actual and expected feed intake of an animal based on its BW and growth rate over a specified period. The biological mechanisms underlying the variation in feed efficiency in animals with similar BW and growth rate are not well understood. This study determined the relationship of feedlot feed efficiency, performance, and feeding behavior with digestion and energy partitioning of 27 steers. The steers were selected from a total of 306 animals based on their RFI following feedlot tests at the University of Alberta Kinsella Research Station. Selected steers were ranked into high RFI (RFI > 0.5 SD above the mean, n = 11), medium RFI (RFI +/- 0.5 SD above and below the mean, n = 8), and low RFI (RFI < -0.5 SD below the mean, n = 8). The respective BW +/- SD for the RFI groups were 495.6 +/- 12.7, 529.1 +/- 18.6, and 501.2 +/- 15.5 kg. Digestibility and calorimetry trials were performed on a corn-or barley-based concentrate diet in yr 1 and 2, respectively, at 2.5 x maintenance requirements. Mean DMI (g/kg of BW(0.75)) during the measurements for high-, medium-, and low-RFI groups, respectively, were 82.7 +/- 2.0, 78.8 +/- 2.6, and 81.8 +/- 2.5 and did not differ (P > 0.10). Residual feed intake was correlated with daily methane production and energy lost as methane (r = 0.44; P < 0.05). Methane production was 28 and 24% less in low-RFI animals compared with high- and medium-RFI animals, respectively. Residual feed intake tended to be associated (P < 0.10) with apparent digestibilities of DM (r = -0.33) and CP (r = -0.34). The RFI of steers was correlated with DE (r = -0.41; P < 0.05), ME (r = -0.44; P < 0.05), heat production (HP; r = 0.68; P < 0.001), and retained energy (RE; r = -0.67; P < 0.001; energy values are expressed in kcal/kg of BW(0.75)). Feedlot partial efficiency of growth was correlated (P < 0.01) with methane production (r = -0.55), DE (r = 0.46), ME (r = 0.49), HP (r = -0.50), and RE (r = 0.62). With the exception of HP (r = 0.37; P < 0.05), feed conversion ratio was unrelated to the traits considered in the study. Feeding duration was correlated (P < 0.01) with apparent digestibility of DM (r = -0.55), CP (r = -0.47), methane production (r = 0.51), DE (r = -0.52), ME (r = -0.55), and RE (r = -0.60). These results have practical implications for the selection of animals that eat less at a similar BW and growth rate and for the environmental sustainability of beef production.  相似文献   

15.
Feed intake and feed efficiency of beef cattle are economically relevant traits. The study was conducted to identify QTL for feed intake and feed efficiency of beef cattle by using genotype information from 100 microsatellite markers and 355 SNP genotyped across 400 progeny of 20 Angus, Charolais, or Alberta Hybrid bulls. Traits analyzed include feedlot ADG, daily DMI, feed-to-gain ratio [F:G, which is the reciprocal of the efficiency of gain (G:F)], and residual feed intake (RFI). A mixed model with sire as random and QTL effects as fixed was used to generate an F-statistic profile across and within families for each trait along each chromosome, followed by empirical permutation tests to determine significance thresholds for QTL detection. Putative QTL for ADG (chromosome-wise P < 0.05) were detected across families on chromosomes 5 (130 cM), 6 (42 cM), 7 (84 cM), 11 (20 cM), 14 (74 cM), 16 (22 cM), 17 (9 cM), 18 (46 cM), 19 (53 cM), and 28 (23 cM). For DMI, putative QTL that exceeded the chromosome-wise P < 0.05 threshold were detected on chromosomes 1 (93 cM), 3 (123 cM), 15 (31 cM), 17 (81 cM), 18 (49 cM), 20 (56 cM), and 26 (69 cM) in the across-family analyses. Putative across-family QTL influencing F:G that exceeded the chromosome-wise P < 0.05 threshold were detected on chromosomes 3 (62 cM), 5 (129 cM), 7 (27 cM), 11 (16 cM), 16 (30 cM), 17 (81 cM), 22 (72 cM), 24 (55 cM), and 28 (24 cM). Putative QTL influencing RFI that exceeded the chromosome-wise P < 0.05 threshold were detected on chromosomes 1 (90 cM), 5 (129 cM), 7 (22 cM), 8 (80 cM), 12 (89 cM), 16 (41 cM), 17 (19 cM), and 26 (48 cM) in the across-family analyses. In addition, a total of 4, 6, 1, and 8 chromosomes showed suggestive evidence (chromosome-wise, P < 0.10) for putative ADG, DMI, F:G, and RFI QTL, respectively. Most of the QTL detected across families were also detected within families, although the locations across families were not necessarily the locations within families, which is likely because of differences among families in marker informativeness for the different linkage groups. The locations and direction of some of the QTL effects reported in this study suggest potentially favorable pleiotropic effects for the underlying genes. Further studies will be required to confirm these QTL in other populations so that they can be fine-mapped for potential applications in marker-assisted selection and management of beef cattle.  相似文献   

16.
A genome wide-association study for production traits in cattle was carried out using genotype data from the 10K Affymetrix (Santa Clara, CA) and the 50K Illumina (San Diego, CA) SNP chips. The results for residual feed intake (RFI), BW, and hip height in 3 beef breed types (Bos indicus, Bos taurus, and B. indicus × B. taurus), and for stature in dairy cattle, are presented. The aims were to discover SNP associated with all traits studied, but especially RFI, and further to test the consistency of SNP effects across different cattle populations and breed types. The data were analyzed within data sets and within breed types by using a mixed model and fitting 1 SNP at a time. In each case, the number of significant SNP was more than expected by chance alone. A total of 75 SNP from the reference population with 50K chip data were significant (P < 0.001) for RFI, with a false discovery rate of 68%. These 75 SNP were mapped on 24 different BTA. Of the 75 SNP, the 9 most significant SNP were detected on BTA 3, 5, 7, and 8, with P ≤ 6.0 × 10(-5). In a population of Angus cattle divergently selected for high and low RFI and 10K chip data, 111 SNP were significantly (P < 0.001) associated with RFI, with a false discovery rate of 7%. Approximately 103 of these SNP were therefore likely to represent true positives. Because of the small number of SNP common to both the 10K and 50K SNP chips, only 27 SNP were significantly (P < 0.05) associated with RFI in the 2 populations. However, other chromosome regions were found that contained SNP significantly associated with RFI in both data sets, although no SNP within the region showed a consistent effect on RFI. The SNP effects were consistent between data sets only when estimated within the same breed type.  相似文献   

17.
As African indigenous cattle evolved in a hot tropical climate, they have developed an inherent thermotolerance; survival mechanisms include a light‐colored and shiny coat, increased sweating, and cellular and molecular mechanisms to cope with high environmental temperature. Here, we report the positive selection signature of genes in African cattle breeds which contribute for their heat tolerance mechanisms. We compared the genomes of five indigenous African cattle breeds with the genomes of four commercial cattle breeds using cross‐population composite likelihood ratio (XP‐CLR) and cross‐population extended haplotype homozygosity (XP‐EHH) statistical methods. We identified 296 (XP‐EHH) and 327 (XP‐CLR) positively selected genes. Gene ontology analysis resulted in 41 biological process terms and six Kyoto Encyclopedia of Genes and Genomes pathways. Several genes and pathways were found to be involved in oxidative stress response, osmotic stress response, heat shock response, hair and skin properties, sweat gland development and sweating, feed intake and metabolism, and reproduction functions. The genes and pathways identified directly or indirectly contribute to the superior heat tolerance mechanisms in African cattle populations. The result will improve our understanding of the biological mechanisms of heat tolerance in African cattle breeds and opens an avenue for further study.  相似文献   

18.
The performance test protocol for Japanese Black cattle was revised in April 2002. This resulted in restriction of access to concentrate (based on body weight) and modification of the concentrate's ingredients. Genetic parameters of growth and feed utilization traits of the performance test were estimated using 1304 records using the revised protocol. Residual feed intakes (RFIs) as alternative indicators for feed utilization efficiency were included. (Co)variance components were estimated by EM-REML. Heritabilities for growth traits were between 0.26 and 0.47. Heritabilities for feed intakes and conversions ranged from 0.25 to 0.37 and from 0.03 to 0.29, respectively. Genetic variances and heritabilities were lower for the revised protocol. Highly positive genetic correlations of daily gain (DG) with feed intakes indicated selection on DG is expected to increase feed intake. Selection on feed conversion may lead to higher DG. The heritability estimates for RFIs ranged from 0.10 to 0.33 and were generally higher than corresponding estimates for feed conversion ratios. RFI of TDN showed positive genetic correlations with all feed intakes. The reduction of feed intakes could be expected through selection on the RFI without changing body size. RFIs were considered to be alternative indicators to improve feed utilization efficiency under the new performance test.  相似文献   

19.
为探讨日粮添加产朊假丝酵母菌(Candida utilis)对肉牛育肥增重性能的影响,选取15月龄体重(376.53±30.31)kg的新疆褐牛与哈萨克牛杂交F1代公牛30头,随机分为对照组(CT)与产朊假丝酵母菌组(CU),CT组饲喂全混合日粮(TMR),CU组在TMR中按10 g/100 kg体重添加产朊假丝酵母菌粉剂(活菌数≥4×109 CFU/g)。饲养期为120 d,每隔30 d测定TMR剩料粒度、体重变化,并采用粪筛对粪样分布进行粒度分析。结果表明:在TMR投料配方比例与制作粒度保持不变的情况下,随着育肥期的延长,宾州筛第1层(粒径>19 mm)比例下降,说明添加产朊假丝酵母菌可以提高肉牛对长粗饲料的采食;15月龄肉牛体重变化随饲养天数呈一元线性增长模式;CU组平均干物质采食量(DMI)比CT组降低9.9%(P<0.05);CU组平均耗料增重比(F/G)比CT组下降了15.4%(P<0.05),日增重(ADG)有所提高(P>0.05),说明CU组可以提高饲料转化效率;CU组胴体重高于CT组4.2%(P<0.05),但屠宰率无显著差异;利用粪筛对CU组与CT组粪便粒径分析,中上层比例有所降低表明CU组肉牛对TMR中饲料颗粒消化更加充分。综上所述,日粮添加产朊假丝酵母可以提高15月龄肉牛对TMR中长纤维的采食,DMI降低9.9%,F/G降低15.4%,胴体重提高4.2%。  相似文献   

20.
Feeding behavior and temperament may be useful in genetic evaluations either as indicator traits for other economically relevant traits or because the behavior traits may have a direct economic value. We determined the variation in feeding behavior and temperament of beef cattle sired by Angus, Charolais, or Hybrid bulls and evaluated their associations with performance, efficiency, and carcass merit. The behavior traits were daily feeding duration, feeding head down (HD) time, feeding frequency (FF), and flight speed (FS, as a measure of temperament). A pedigree file of 813 animals forming 28 paternal half-sib families with about 20 progeny per sire was used. Performance, feeding behavior, and efficiency records were available on 464 animals of which 381 and 302 had records on carcass merit and flight speed, respectively. Large SE reflect the number of animals used. Direct heritability estimates were 0.28 +/- 0.12 for feeding duration, 0.33 +/- 0.12 for HD, 0.38 +/- 0.13 for FF, and 0.49 +/- 0.18 for FS. Feeding duration had a weak positive genetic (r(g)) correlation with HD (r(g) = 0.25 +/- 0.32) and FS (r(g) = 0.42 +/- 0.26) but a moderate negative genetic correlation with FF (r(g) = -0.40 +/- 0.30). Feeding duration had positive phenotypic (r(p)) and genetic correlations with DMI (r(p) = 0.27; r(g) = 0.56 +/- 0.20) and residual feed intake (RFI; r(p) = 0.49; r(g) = 0.57 +/- 0.28) but was unrelated phenotypically with feed conversion ratio [FCR; which is the reciprocal of the efficiency of growth (G:F)]. Feeding duration was negatively correlated with FCR (r(g) = -0.25 +/- 0.29). Feeding frequency had a moderate to high negative genetic correlation with DMI (r(g) = -0.74 +/- 0.15), FCR (r(g) = -0.52 +/- 0.21), and RFI (r(g) = -0.77 +/- 0.21). Flight speed was negatively correlated phenotypically with DMI (r(p) = -0.35) but was unrelated phenotypically with FCR or RFI. On the other hand, FS had a weak negative genetic correlation with DMI (r(g) = -0.11 +/- 0.26), a moderate genetic correlation with FCR (r(g) = 0.40 +/- 0.26), and a negative genetic correlation with RFI (r(g) = -0.59 +/- 0.45). The results indicate that behavior traits may contribute to the variation in the efficiency of growth of beef cattle, and there are potential correlated responses to selection to improve efficiency. Feeding behavior and temperament may need to be included in the definition of beef cattle breeding goals, and approaches such as the culling of unmanageable cattle and the introduction of correct handling facilities or early life provision of appropriate experiences to improve handling will be useful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号