首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
共轭亚油酸(Conjugated linoleic acid,CLA)具有诸多生理活性,天然的CLA主要来源于反刍动物产品。在日粮中添加富含多不饱和脂肪酸(Polyunsaturated fatty acid,PUFA)的饲料是提高反刍动物产品中CLA含量的一个重要方法。本文通过PUFA对反刍动物CLA机体、消化道及组织等不同代谢层次的影响进行了综述,提出了目前通过PU-FA提高反刍动物CLA中存在的问题,期望为生产中深入利用反刍动物的高CLA这一优势、提高其产品品质提供帮助。  相似文献   

2.
弓剑 《饲料研究》2012,(10):19-21
反刍动物乳肉产品是人类摄取共轭亚油酸(CLA)的主要来源,但反刍动物乳肉产品中CLA的含量较低,CLA及CLA在乳腺和脂肪组织中的合成前体十八碳单烯酸是不饱和脂肪酸瘤胃生物氢化的中间产物,深入了解不饱和脂肪酸的瘤胃生物氢化过程和代谢途径有助于通过瘤胃调控有针对性地提高反刍动物肉奶产品中CLA的含量.综述不同瘤胃微生物对脂肪酸的生物氢化作用及主要的不饱和脂肪酸在生物氢化过程中的中间代谢产物,为进一步调控反刍动物乳肉脂肪酸组成提供依据.  相似文献   

3.
本文对反刍动物CLA调控的现状作一简要综述,力求为从事CLA调控的相关科研人员提供一定的信息,为开发CLA反刍动物产品提供指导。  相似文献   

4.
反刍动物共轭亚油酸的合成及其对乳脂率的影响   总被引:1,自引:0,他引:1  
共轭亚油酸(CLA)是一种主要存在于反刍动物脂肪和乳脂中的天然活性成分.亚油酸和亚麻酸能通过瘤胃微生物的一系列异构和脱氢作用合成CLA,反式油酸在反刍动物肝脏微粒体、乳腺细胞和脂肪组织中被△9-脱氢酶脱氢也能生成c9,t11-CLA,并被确认为反刍动物CLA的主要来源.反刍动物体内CLA的合成受动物品种、环境、日粮等多种因素影响,个体之间也存在差异.在日粮中添加不饱和脂肪酸提高CLA含量的同时,对乳脂率会造成较大的影响.本文综述了反刍动物CLA合成及饲喂不饱和脂肪酸对其乳脂率的影响.  相似文献   

5.
影响反刍动物产品中共轭亚油酸含量的饲粮因素探讨   总被引:2,自引:0,他引:2  
共轭亚油酸(CLA)具有抗癌、抗动脉粥样硬化、抗氧化、降低脂肪沉积、促进生长以及调节免疫等重要的生理功能。人类食物中的CLA主要来源于反刍动物产品。影响反刍动物产品CLA含量的因素主要包括:(1)饲粮中的脂类底物;(2)瘤胃内环境的改变;(3)饲喂方式;(4)饲粮中CLA的供给。生产中可以通过饲粮来调控瘤胃微生物区系,以增加CLA的合成;也可以给饲粮提供富含亚油酸的原料,通过增加底物来提高反刍动物产品中的CLA含量。  相似文献   

6.
共轭亚油酸(CLA)是一种主要从反刍动物脂肪和牛奶产品中发现的天然活性物质,是一类含有共轭双键的十八碳二烯酸(亚油酸)异构体混合物。亚油酸和亚麻酸在反刍动物瘤胃内通过异构化和生物脱氢反应形成CLA,反式脂肪酸在动物细胞内经δ9-脱氢酶的脱氢作用也能形成CLA。饲料、瘤胃微生物、瘤胃pH以及品种等都对CLA有着重要的影响。反刍动物来源的食品是共轭亚油酸最主要的天然来源。本文就CLA在反刍动物体内的合成及营养调控措施作一综述。  相似文献   

7.
共轭亚油酸在反刍动物中的生物合成与营养调控   总被引:1,自引:0,他引:1  
共轭亚油酸(CLA)是一种主要从反刍动物脂肪和牛奶产品中发现的天然活性物质,是一类含有共轭双键的十八碳二烯酸(亚油酸)异构体混合物.亚油酸和亚麻酸在反刍动物瘤胃内通过异构化和生物脱氢反应形成CLA,反式脂肪酸在动物细胞内经△9-脱氢酶的脱氢作用也能形成CLA.饲料、瘤胃微生物、瘤胃pH值以及品种等都对CLA有着重要的影响.反刍动物来源的食品是共轭亚油酸最主要的天然来源.本文就CLA的生物合成及营养调控作了简要阐述.  相似文献   

8.
营养调控牛乳中共轭亚油酸含量的研究进展   总被引:1,自引:0,他引:1  
共轭亚油酸(CLA)是一种主要从反刍动物脂肪及其奶产品中发现的天然活性物质.一些多不饱和脂肪酸(主要是亚油酸和亚麻酸)在反刍动物瘤胃内通过异构化和生物脱氢反应形成CLA;另外,反式油酸在动物细胞内经△<'9>-脱氢酶的脱氢作用也能形成CLA.笔者介绍了一些重要的营养调控措施,以提高奶牛乳脂中CLA含量.  相似文献   

9.
饲料级鱼油是畜禽及水产动物养殖中常用的动物性能量饲料原料之一。鱼油富含n-3系列的多不饱和脂肪酸,能够有效提高动物性产品中共轭亚油酸(CLA)含量,特别是反刍动物乳汁及肉中CLA含量。在反刍动物生产中合理开发利用鱼油,可以有效提高畜产品的营养价值。文章介绍了鱼油中氨基酸的组成,综述日粮中添加鱼油对反刍动物肉品质影响的研究进展,为鱼油在反刍动物中的合理开发利用提供参考。  相似文献   

10.
乳脂肪中的生理活性物质--共轭亚油酸   总被引:1,自引:0,他引:1  
对共轭亚油酸(CLA)的结构、来源、代谢机理进行了考证,分析了影响反刍动物产品CLA含量的因素,并阐明了其应用前景.  相似文献   

11.
Conjugated linoleic acid (CLA), a mixture of isomers of linoleic acid, has many beneficial effects, including decreased tumor growth in animal cancer models. The cis-9, trans-11 isomer of CLA (CLA9,11) can be formed in the rumen as an intermediate in biohydrogenation of linoleic acid. Recent data, however, indicate that tissue desaturation of trans-fatty acids is an important source of CLA9,11 in milk. Our objective was to determine whether supplementing a high-corn diet with soybean oil (SBO; a source of linoleic acid) would increase concentrations of CLA in ruminal contents and tissue lipids. Four ruminally cannulated steers were utilized in a Latin square design with 28-d periods. A control diet (80% cracked corn, 2.0% corn steep liquor, 8.0% ground corn cobs, and 10% supplement [soybean meal, ground shelled corn, minerals, and vitamins]) was supplemented with 2.5, 5.0, or 7.5% (DM basis) SBO. Supplemental SBO did not affect ruminal pH or concentrations of the major VFA. The proportion and amount (mg FA/g DM ruminal contents) of CLA9,11 were not increased by increasing dietary SBO. However, the proportion and amount of the trans-10, cis-12 CLA isomer (CLA10,12) in ruminal contents increased linearly (P < 0.006) as dietary SBO increased. Trans-18:1 isomers in ruminal contents increased linearly (P < 0.02) as dietary SBO increased. The proportion of CLA10,12 was correlated positively (P < 0.001) with proportions of trans-C 18:1 isomers in ruminal contents. Conversely, CLA9,11 was correlated negatively (P < 0.05) with the proportions of trans-18:1 in ruminal contents. The same high-corn diet, supplemented with 0 or 5% SBO, was fed to 20 Angus-Wagyu heifers for 102 d in a randomized complete block design to determine the effect of added SBO on tissue deposition of CLA. Supplemental SBO did not affect feed intake, gain:feed, or carcass quality. Tissue samples were obtained from the hindquarter, loin, forequarter, liver, large and small intestine, and subcutaneous, mesenteric, and perirenal adipose depots. The concentration of CLA9,11 was greatest in subcutaneous adipose tissue but was not affected in any tissue by SBO. Supplementing high-corn diets with SBO does not increase CLA9,11 concentrations in tissues of fattening heifers. Research is needed to identify regulatory factors for pathways of biohydrogenation that lead to increased concentrations of CLA10,12 in ruminal contents when high-oil, high-concentrate diets are fed.  相似文献   

12.
共轭亚油酸(CLA)因具有抗癌、抗糖尿病及增强机体免疫力等功能而备受研究人员关注,近年来,针对备受消费者青睐的羊肉和羊奶等产品中CLA含量的研究越来越多。作者简述了反刍动物产品中CLA生物合成机制,并重点回顾了多种营养调控措施对瘤胃中CLA和十八碳烯酸积累的影响结果;进一步探讨了这几种营养调控方式对羊乳和羊肉中CLA含量的影响。分析认为,利用油脂底物和调控剂混合添加有利于加强瘤胃纤维菌群和原虫区系对CLA、十八碳烯酸的积累和过瘤胃率,并可在提高动物产品中CLA含量的同时,避免乳脂率下降。今后还需通过营养、分子生物学及生理学等角度全面揭示CLA合成机理,为生产富含CLA的动物产品提供参考。  相似文献   

13.
Objectives of this study were to compare fatty acid (FA) composition of ruminal bacterial (B) and protozoal (P) cells, and to investigate effect of protozoa on FA profile in the rumen of cattle. Three cows were used to prepare ruminal B and P cells. Four faunated and three defaunated cattle (half‐siblings) were used to study effect of protozoa on ruminal FA profile. Proportions of C16:0 and C18:0 in total fatty acids in B cells were 20.7% and 37.4%, whereas those in P cells were 33.4% and 11.6%, respectively. Proportions of trans‐vaccenic acid (VA) and cis‐9, trans‐11 conjugated linoleic acid (CLA) in B cells were 3.9% and 1.0%, and those in P cells were 5.5% and 1.6%, respectively, being higher in P cells. Proportions of C18:1, C18:2 and C18:3 in P cells were two to three times higher than in B cells. Proportions of unsaturated fatty acids, VA and CLA in B cells of faunated cattle were higher than those of defaunated. VA and CLA in the ruminal fluid of faunated were also 1.6 to 2.5 times higher than those of defaunated. This tendency was similar for cell‐free fraction of ruminal fluid. These results indicate that protozoa contribute greatly in VA and CLA production in the rumen.  相似文献   

14.
Researcher pay attention to the conjugated linoleic acid (CLA) because of its function of anticancer,antidiabetic and immunological competence in the body.A lot of researches on contents of CLA in goat that enjoy high favor among people has been carried out in recent years.The article presents the biosynthsis process of CLA in ruminal,and focus on reviewing the result of many sdudies on the effects of the contents of CLA and vaccine acid in rumen;Further treat of the effects of nutrition regulation on CLA in goat's milk and mutton.Result show that the microflora and protozoa could increase the contents of CLA in rumen by using grease mixed of regulator,and increasing the contents of CLA in animal products at the same time,and avoiding to decline the contents of milk fat.we should reveal synthesis mechanism of CLA through nutrition,molecular biology,and physiology fully in the future,to provides a theoretical basis for producting CLA-enriched mutton and milk.  相似文献   

15.
The objective of this study was to identify environmental factors that influence conjugated linoleic acid (CLA) and trans-C18:1 fatty acid production by mixed ruminal bacteria. Ruminal contents were collected from a 600-kg ruminally fistulated Hereford steer maintained on pasture. Mixed ruminal bacteria were obtained by differential centrifugation under anaerobic conditions and added to a basal medium that contained a commercial emulsified preparation of soybean oil and a mixture of soluble carbohydrates (cellobiose, glucose, maltose, and xylose). Culture samples were collected from batch culture incubations at 0, 2, 4, 6, 8, 12, 24, 26, 28, 30, 32, and 48 h. Continuous culture incubations were conducted at dilution rates of 0.05 and 0.10 h(-1) with extracellular pH values of 5.5 and 6.5, and 0.5 and 1.0 g/L of mixed soluble carbohydrates. Culture samples were obtained from the culture vessel once steady-state conditions had been achieved. In batch culture, trans-C18:1 concentrations increased over time and reached a maximum at 48 h. Little CLA was produced during the first 8 h, but cis-9, trans-11 CLA concentrations remained high between 24 and 30 h. When mixed ruminal bacteria were maintained in continuous culture on 0.5 g/L of mixed soluble carbohydrates, concentrations of trans-C18:1 and cis-9, trans-11 CLA were reduced (P < 0.05) at a dilution rate of 0.05 h(-1) and an extracellular pH of 5.5. Similar effects were also observed when 1.0 g/L of mixed soluble carbohydrates was used. When extracellular pH was lowered to 5.0, neither trans-C18:1 or CLA isomers were detected. In conclusion, our results suggest that culture pH appears to have the most influence on the production of trans-C18:1 and CLA isomers by mixed ruminal bacteria.  相似文献   

16.
Three Angus steers (410 kg) cannulated in the proximal duodenum were used in a replicated 3 x 3 Latin square to evaluate the effects of dietary lipid level and oil source on ruminal biohydrogenation and conjugated linoleic acid (CLA) outflow. Dietary treatments included: 1) typical corn (TC; 79.2% typical corn), 2) high-oil corn (HOC; 79.2% high-oil corn), and 3) the TC diet with corn oil added to supply an amount of lipid equal to the HOC diet (OIL; 76.9% TC + 2.4% corn oil). Duodenal samples were collected for 4 d following 10-d diet adaptation periods. Data were analyzed with animal, square, period, and treatment in the model and planned, nonorthogonal contrasts were used to test the effects of dietary lipid content (TC vs HOC and OIL) and oil source (HOC vs OIL) on ruminal biohydrogenation. Intake and duodenal flow of total long-chain fatty acids were increased (P < 0.05) by over 63% for diets containing more lipid regardless of oil source. Apparent ruminal dry matter and long chain fatty acid digestibilities were not altered (P > 0.05) by dietary lipid level or oil source. Ruminal biohydrogenation of total and individual 18-carbon unsaturated fatty acids was greater (P < 0.05) for diets with higher lipid content. Biohydrogenation of oleic acid was greater (P < 0.05) for HOC than OIL, but biohydrogenation of linoleic acid was lower (P < 0.05) for HOC than OIL. Duodenal flows of palmitic, stearic, oleic, linoleic, and arachidic acids were more than 30% greater (P < 0.05) for diets containing more lipid. Flow of all trans-octadecenoic acids was greater (P < 0.05) for diets containing more lipid. Corn oil addition increased (P < 0.05) the flow of trans-10 octadecenoic acid and the trans-10, cis-12 isomer of CLA by threefold compared to feeding high-oil corn. Feeding high-oil corn or adding corn oil to typical corn rations increased intake, biohydrogenation, and duodenal flow of unsaturated long-chain fatty acids. Compared with high-oil corn diets, addition of corn oil increased duodenal flow of trans-10, trans-12 and cis-12 isomers of octadecenoic acid and the trans-10, cis-12 isomer of CLA. The amount of cis-9, trans-11 isomer of conjugated linoleic acid flowing to the duodenum was less than 260 mg/d, a value over 20 times lower than flow of trans-11 vaccenic acid indicating the importance of tissue desaturation for enhanced conjugated linoleic acid content of beef.  相似文献   

17.
Milk and meat products derived from ruminants contain a mixture of positional and geometric isomers of C18:2 with conjugated double bonds, and cis‐9, trans‐11C18:2 (conjugated linoleic acid, CLA) is the predominant isomer. The presence of CLA in ruminant products relates to the biohydrogenation of unsaturated fatty acids by rumen bacteria. Although, it has been suggested that cis‐9, trans‐11 CLA is an intermediate that escapes complete ruminal biohydrogenation of linoleic acid, is absorbed from the digestive tract, and transported to tissues via circulation. Its major source is endogenous biosynthesis involving Δ9‐desaturase with trans‐11C18:1 produced in the rumen as the substrate. CLA has recently been recognized in animal studies as a nutrient that exerts important physiological effects, including anticarcinogenic effects, prevention of cholesterol‐induced atherosclerosis, enhancement of the immune response, reduction in fat accumulation in body, ability to enhance growth promotion, antidiabetic effects and improvement in bone mineralization. The present review focused on the origin of CLA in ruminant products, and the health benefits, metabolism and physiological functions of CLA.  相似文献   

18.
The ruminal biohydrogenation of c9,c12‐18:2 can be affected by the fibre/starch ratio of the diet and the ruminal pH. The objectives of this study were to examine independently in vitro the effects of fermentation substrate (hay vs. corn starch) and buffer pH (6 vs. 7) on the biohydrogenation of c9,c12‐18:2 carried out by grape seed oil, focusing on its t11 and t10 pathways, using 6‐h ruminal incubations. The experimental design was a 2 × 2 factorial arrangement. Fermentation substrate and pH affected the C18 fatty acid balance in incubated media, but few interactions were observed. Compared with starch, hay as the fermentation substrate favoured the production of 18:0 (×2.3), all trans‐18:1 isomers (×12.6) and CLA (×6.1), except c9,t11‐CLA, and the disappearance of unsaturated C18 fatty acids, but decreased the production of odd and branched chain fatty acids. Compared with pH 6 buffer, pH 7 buffer resulted in higher c9,c12‐18:2 disappearance and CLA production. For c9,t11‐CLA, an interaction was noticed between the two factors, leading to the highest production in cultures incubated on hay with the 7 pH buffer. Compared with starch, hay as fermentation substrate favoured the activity of t11 producers, which are fibrolytic bacteria, and the production of t10 isomers, possibly due to the presence of potential t10 producers in hay. Low pH resulted in a decreased t11 isomers production and in a slightly increased t10 isomers production, probably due to a modulation of enzymatic or bacterial activity.  相似文献   

19.
Recent advances in chromatographic identification of CLA isomers, combined with interest in their possible properties in promoting human health (e.g., cancer prevention, decreased atherosclerosis, improved immune response) and animal performance (e.g., body composition, regulation of milk fat synthesis, milk production), has renewed interest in biohydrogenation and its regulation in the rumen. Conventional pathways of biohydrogenation traditionally ignored minor fatty acid intermediates, which led to the persistence of oversimplified pathways over the decades. Recent work is now being directed toward accounting for all possible trans-18:1 and CLA products formed, including the discovery of novel bioactive intermediates. Modern microbial genetics and molecular phylogenetic techniques for identifying and classifying microorganisms by their small-subunit rRNA gene sequences have advanced knowledge of the role and contribution of specific microbial species in the process of biohydrogenation. With new insights into the pathways of biohydrogenation now available, several attempts have been made at modeling the pathway to predict ruminal flows of unsaturated fatty acids and biohydrogenation intermediates across a range of ruminal conditions. After a brief historical account of major past accomplishments documenting biohydrogenation, this review summarizes recent advances in 4 major areas of biohydrogenation: the microorganisms involved, identification of intermediates, the biochemistry of key enzymes, and the development and testing of mathematical models to predict biohydrogenation outcomes.  相似文献   

20.
The objective of this study was to determine the forage:concentrate ratio that would provide the greatest duodenal flow of unsaturated fatty acids in ewes supplemented with soybean oil and to determine how diets differing in forage content affect flow of conjugated linoleic acid (CLA) and trans-vaccenic acid (18:1(trans-11)). Five mature ewes (66.5 +/- 12.8 kg) fitted with ruminal and duodenal cannulas were used in a 5 x 5 Latin square experiment. Diets were isonitrogenous and included bromegrass hay, cracked corn, corn gluten meal, urea, and limestone. Dietary fat was adjusted to 6% with soybean oil. Five ratios of forage:concentrate (18.4:81.6, 32.2:67.8, 45.8:54.2, 59.4:40.6, and 72.9:27.1) were fed at 1.3% of BW daily in equal allotments at 0630 and 1830. After 14 d, Cr2O3 (2.5 g) was dosed at each feeding for 7 d and ruminal, duodenal, and fecal collections were taken for the next 3 d. Duodenal flow of 18:0 increased linearly (P < 0.01) with dietary forage. Duodenal flow of 18:1(cis-9) and 18:2(cis-9,12) decreased (P < 0.001) but duodenal flow of 18:3(cis-9,12,15) increased (P < 0.01) with increased dietary forage. Biohydrogenation of dietary unsaturated fatty acids increased (P < 0.001) as dietary forage increased, which was concomitant with increased ruminal pH. Duodenal flow of 18:2(cis-9,trans-11) increased linearly (P < 0.01) with increased dietary forage but increased abruptly when forage was fed at 45.8%. Duodenal flow of the trans-10, cis-12 and cis-10, cis-12 CLA isomers decreased as dietary forage increased, but flow tended to increase on the highest-forage diet, resulting in both linear (P < 0.01) and quadratic (P < 0.01) effects. Duodenal flow of 18:1(trans-11) decreased from 8.28 g/d on the 18.4% forage diet to 5.47 g/d on the 59.4% forage diet then increased to 7.29 g/d on the highest-forage diet (quadratic, P < 0.1). Duodenal flow of 18:1(trans-11) was 27- to 69-fold greater than flow of CLA. We conclude that when ewes were fed a 6% crude fat diet duodenal flows of dietary fatty acids changed incrementally as dietary forage was increased, whereas changes in flows of CLA isomers seemed to be more abrupt. Biohydrogenation changes were gradual with diet, suggesting a gradual shift in ruminal microbial populations with increasing forage. Finally, the highest-concentrate diet supported the greatest duodenal flows of dietary unsaturated fatty acids, as well as the highest flow of 18:1(trans-11).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号