首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Levosulpiride (LSP) is the l‐enantiomer of sulpiride, and LSP recently replacing sulpiride in several EU countries. Several studies about LSP in humans are present in the literature, but neither pharmacodynamic nor pharmacokinetic data of LSP is present for veterinary species. The aim of this study was to assess the pharmacokinetic profile of LSP after intravenous (IV), intramuscular (IM), and oral (PO) administration in goats. Animals (n = 6) were treated with 50 mg LSP by IV, IM, and PO routes according to a randomized cross‐over design (3 × 3 Latin‐square). Blood samples were collected prior and up to 24 hr after LSP administration and quantified using a validated HPLC method with fluorescence detection. IV and IM administration gave similar concentration versus time curve profiles. The IM mean bioavailability was 66.97%. After PO administration, the drug plasma concentrations were detectable only in the time range 1.5–4 hr, and the bioavailability (4.73%) was low. When the AUC was related to the administered dose in mg/kg, there was a good correlation in the IV and IM groups, but very low correlation for the PO route. In conclusion, the IM and IV administrations result in very similar plasma concentrations. Oral dosing of LSP in goats is probably not viable as its oral bioavailability was very low.  相似文献   

2.
The aim of this study was to determine the pharmacokinetics/pharmacodynamics of enrofloxacin (ENR) and danofloxacin (DNX) following intravenous (IV) and intramuscular (IM) administrations in premature calves. The study was performed on twenty‐four calves that were determined to be premature by anamnesis and general clinical examination. Premature calves were randomly divided into four groups (six premature calves/group) according to a parallel pharmacokinetic (PK) design as follows: ENR‐IV (10 mg/kg, IV), ENR‐IM (10 mg/kg, IM), DNX‐IV (8 mg/kg, IV), and DNX‐IM (8 mg/kg, IM). Plasma samples were collected for the determination of tested drugs by high‐pressure liquid chromatography with UV detector and analyzed by noncompartmental methods. Mean PK parameters of ENR and DNX following IV administration were as follows: elimination half‐life (t1/2λz) 11.16 and 17.47 hr, area under the plasma concentration–time curve (AUC0‐48) 139.75 and 38.90 hr*µg/ml, and volume of distribution at steady‐state 1.06 and 4.45 L/kg, respectively. Total body clearance of ENR and DNX was 0.07 and 0.18 L hr?1 kg?1, respectively. The PK parameters of ENR and DNX following IM injection were t1/2λz 21.10 and 28.41 hr, AUC0‐48 164.34 and 48.32 hr*µg/ml, respectively. The bioavailability (F) of ENR and DNX was determined to be 118% and 124%, respectively. The mean AUC0‐48CPR/AUC0‐48ENR ratio was 0.20 and 0.16 after IV and IM administration, respectively, in premature calves. The results showed that ENR (10 mg/kg) and DNX (8 mg/kg) following IV and IM administration produced sufficient plasma concentration for AUC0‐24/minimum inhibitory concentration (MIC) and maximum concentration (Cmax)/MIC ratios for susceptible bacteria, with the MIC90 of 0.5 and 0.03 μg/ml, respectively. These findings may be helpful in planning the dosage regimen for ENR and DNX, but there is a need for further study in naturally infected premature calves.  相似文献   

3.
The pharmacokinetics and bioavailability of levamisole were determined in red‐eared slider turtles after single intravenous (IV), intramuscular (IM), and subcutaneous (SC) administration. Nine turtles received levamisole (10 mg/kg) by each route in a three‐way crossover design with a washout period of 30 days. Blood samples were collected at time 0 (pretreatment), and at 0.25, 0.5, 1, 1.5, 3, 6, 9, 12, 18, 24, 36, and 48 hr after drug administration. Plasma levamisole concentrations were determined by a high‐performance liquid chromatography assay. Data were analyzed by noncompartmental methods. The mean elimination half‐life was 5.00, 7.88, and 9.43 hr for IV, IM, and SC routes, respectively. The total clearance and volume of distribution at steady state for the IV route were 0.14 L hr?1 kg?1 and 0.81 L/kg, respectively. For the IM and SC routes, the peak plasma concentration was 9.63 and 10.51 μg/ml, respectively, with 0.5 hr of Tmax. The bioavailability was 93.03 and 115.25% for the IM and SC routes, respectively. The IM and SC route of levamisole, which showed the high bioavailability and long t1/2?z, can be recommended as an effective way for treating nematodes in turtles.  相似文献   

4.
Standard limb, six lead (I, II, III, aVR, aVL, and aVF) electrocardiograms (ECGs) were recorded in 10 awake mature rock partridges (Alectoris graeca) and 10 chukar partridges (Alectoris chukar). Durations and amplitudes of P and T waves and QRS complexes, durations of P-Q and Q-T intervals, and mean heart rates were calculated from the lead II ECGs. All observable P and T waves were negative in aVR and aVL, whereas they were positive in all remaining leads. The most frequent forms of QRS complex were r-s (r-S) and q-r (q-R). A Q wave was observed in all aVR and aVL leads in both species. Chukar partridges had significantly higher amplitudes of P and T waves and QRS complexes than rock partridges. Mean heart rates were 310+/-15 beats/min and 317+/-19 beats/min for chukar partridges and rock partridges, respectively. Mean electrical axes, calculated from leads II and III, were -99+/-6.3 degrees and -95+/-1.7 degrees for chukar partridges and rock partridges, respectively. Clear ECGs were easily obtainable without anesthesia or sedation.  相似文献   

5.
The pharmacokinetic parameters of levamisole were determined in the Caspian salmon after intramuscular (IM), oral by gavage, and oral by feed administrations. Eighty-one healthy fish in three different groups received levamisole at the dose of 25 mg/fish by each route. Blood samples were collected at time points of 0, 0.5, 1, 2, 4, 6, 12, 14, and 24 hr after administrations. Plasma levamisole concentrations were measured by a validated high-performance liquid chromatography (HPLC) assay and were analyzed using a noncompartmental approach. The mean terminal half-life was 4.56, 3.95, and 2.91 hr for IM, gavage and feed routes, respectively. The peak plasma concentration for IM, gavage, and feed routes of levamisole were 35.53, 4.63, and 8.36 µg/ml, respectively, at the time of 0.25 for IM, and 1 hr for gavage and feed. The relative bioavailability for gavage and feed routes was 54.80 and 69.30. The similar bioavailability for gavage and feed might be indicative of similar efficacy for these routes of administrations. Further studies are warranted to evaluate the absolute oral bioavailability and the effective dose in Caspian salmon.  相似文献   

6.
Midazolam is a benzodiazepine with sedative, muscle relaxant, anxiolytic, and anticonvulsant effects. Twelve ball pythons (Python regius) were used in a parallel study evaluating the pharmacokinetics of 1 mg/kg midazolam following a single intracardiac (IC) or intramuscular (IM) administration. Blood was collected from a central venous catheter placed 7 days prior, or by cardiocentesis, at 15 time points starting just prior to and up to 72 hr after drug administration. Plasma concentrations of midazolam and 1‐hydroxymidazolam were determined by the use of high‐performance liquid chromatography tandem‐mass spectrometry and pharmacokinetic parameters were estimated using noncompartmental analysis. The mean ± SD terminal half‐lives of IC and IM midazolam were 12.04 ± 3.25 hr and 16.54 ± 7.10 hr, respectively. The area under the concentration‐time curve extrapolated to infinity, clearance, and apparent volume of distribution in steady‐state of IC midazolam were 19,112.3 ± 3,095.9 ng*hr/ml, 0.053 ± 0.008 L hr?1 kg?1, and 0.865 ± 0.289 L/kg, respectively. The bioavailability of IM midazolam was estimated at 89%. Maximum plasma concentrations following an IM administration were reached 2.33 ± 0.98 hr and 24.00 ± 14.12 hr postinjection for midazolam and 1‐hydroxymidazolam, respectively, and 22.33 ± 20.26 hr postinjection for 1‐hydroxymidazolam following IC administration.  相似文献   

7.
The aim of this study was to evaluate the pharmacokinetics and bioavailability of cefquinome (CFQ) and ceftriaxone (CTX) following intravenous (IV) and intramuscular (IM) administrations in premature calves. Using a parallel design, 24 premature calves were randomly divided into the two antibiotic groups. Each of the six animals in the first group received CFQ (2 mg/kg) through IV or IM administration. The second group received CTX (20 mg/kg) via the same administration route. Plasma concentrations of the drugs were analyzed by high‐performance liquid chromatography and noncompartmental methods. Mean pharmacokinetic parameters of CFQ and CTX following IV administration were as follows: elimination half‐life (t1/2λz) 1.85 and 3.31 hr, area under the plasma concentration–time curve (AUC0–∞) 15.74 and 174 hr * μg/ml, volume of distribution at steady‐state 0.37 and 0.45 L/kg, and total body clearance 0.13 and 0.12 L hr?1 kg?1, respectively. Mean pharmacokinetic parameters of CFQ and CTX after IM injection were as follows: peak concentration 4.56 and 25.04 μg/ml, time to reach peak concentration 1 and 1.5 hr, t1/2λz 4.74 and 3.62 hr, and AUC0–∞ 22.75 and 147 hr * μg/ml, respectively. The bioavailability of CFQ and CTX after IM injection was 141% and 79%, respectively. IM administration of CFQ (2 mg/kg) and CTX (20 mg/kg) can be recommended at 12‐hr interval for treating infections caused by susceptible bacteria, with minimum inhibitory concentration values of ≤0.5 and ≤4 μg/ml, respectively, in premature calves. However, further research is indicated to assess the pharmacokinetic parameters following multiple doses of the drug in premature calves.  相似文献   

8.
The pharmacokinetics of tylosin were investigated in 3 groups of ducks (n = 6). They received a single dose of tylosin (50 mg/kg) by intravenous (IV), intramuscular (IM), and oral administrations, respectively. Plasma samples were collected at various time points to 24 hr post-administration to evaluate tylosin concentration over time. Additionally, tylosin residues in tissues and its withdrawal time were assessed using 30 ducks which received tylosin orally (50 mg/kg) once daily for 5 consecutive days. After IV administration, the volume of distribution, elimination half-life, area under the plasma concentration–time curve, and the total body clearance were 7.07 ± 1.98 L/kg, 2.04 hr, 19.47 µg hr/ml, and 2.82 L hr−1 kg−1, respectively. After IM and oral administrations, the maximum plasma concentrations were 3.70 and 2.75 µg/ml achieved at 1 and 2 hr, and the bioavailability was 93.95% and 75.77%, respectively. The calculated withdrawal periods of tylosin were 13, 8, and 5 days for kidney, liver, and muscle, respectively. For the pharmacodynamic profile, the minimum inhibitory concentration for tylosin against M. anatis strain 1,340 was 1 µg/ml. The calculated optimal oral dose of tylosin against M. anatis in ducks based on the ex vivo pharmacokinetic/pharmacodynamic modeling was 61 mg kg−1 day−1.  相似文献   

9.
The pharmacokinetics of marbofloxacin (MAR) was compared in geese (Anser Anser domesticus) after single intravenous (IV) and intramuscular (IM) (thigh and pectoral muscles) administrations of 5 mg/kg. Serum concentrations of MAR were determined with high-performance liquid chromatography (HPLC) method. Serum MAR concentrations versus time were analyzed by a noncompartmental method. After IV administration, MAR showed high volume of distribution at steady state (Vdss) of 5.24 ± 1.08 L/kg. The serum body clearance (Cl) and elimination half-life (T1/2λz) of MAR were 0.79 ± 0.07 L hr−1 kg−1 and 6.94 ± 1.12 hr, respectively. The peak of MAR serum concentrations Cmax achieved at one and 0.50 hr after thigh and pectoral IM sites of injections, respectively, were 1.20 and 0.91 μg/ml. Significant differences were found in the mean absorption time (MAT), the systemic bioavailability (F%), and elimination parameters of MAR between two sites of injections, indicating that the absorption was fairly slow and complete after thigh IM injection. The pharmacokinetics of MAR in geese diverged according to the site of IM injection following a parallel study design. We recommend the thigh muscle as IM site of injection to obtain maximum concentrations of the administered drug in geese.  相似文献   

10.
The pharmacokinetics of enrofloxacin (ENR) was studied in crucian carp (Carassius auratus gibelio) after single administration by intramuscular (IM) injection and oral gavage (PO) at a dose of 10 mg/kg body weight and by 5 mg/L bath for 5 hr at 25°C. The plasma concentrations of ENR and ciprofloxacin (CIP) were determined by HPLC. Pharmacokinetic parameters were calculated based on mean ENR or CIP concentrations using WinNonlin 6.1 software. After IM, PO and bath administration, the maximum plasma concentration (Cmax) of 2.29, 3.24 and 0.36 μg/ml was obtained at 4.08, 0.68 and 0 hr, respectively; the elimination half‐life (T1/2β) was 80.95, 62.17 and 61.15 hr, respectively; the area under the concentration–time curve (AUC) values were 223.46, 162.72 and 14.91 μg hr/ml, respectively. CIP, an active metabolite of enrofloxacin, was detected and measured after all methods of drug administration except bath. It is possible and practical to obtain therapeutic blood concentrations of enrofloxacin in the crucian carp using IM, PO and bath immersion administration.  相似文献   

11.
Thymoquinone (TQ) is the major constituent of Nigella sativa and known to possess a variety of pharmacological effects. This study was designed to evaluate the pharmacokinetic profile of TQ following oral (PO) and intravenous (IV) administration in layer chickens. The layer chickens were equally divided into two groups (six chickens in each group, total 12 chickens), and TQ was administered via PO and IV routes. For PO route, the dose was 20 mg/kg b.w. and for IV route, 5 mg/kg b.w. was administered, respectively. A sensitive and accurate High‐Performance Liquid Chromatography (HPLC) technique was validated for the quantification of TQ from plasma. The limit of detection (LOD) and limit of quantification (LOQ) were 0.02 µg/ml and 0.05 µg/ml, respectively with >80% recovery. Maximum plasma concentration (Cmax) following PO and IV administration was 8.805 and 4.497 µg/ml, respectively, while time to reach at maximum concentration (Tmax) was 1 and 0.1 hr, respectively. The elimination half‐lives were recorded as 1.02 and 0.978 hr, whereas the mean residence times were 1.79 and 1.036 hr following both PO and IV administration, respectively. The 85% PO bioavailability was indicative that TQ could be used for various therapeutic purposes in layer chickens.  相似文献   

12.
1. In two partridge species, the grey partridge (Perdix perdix) and chukar (Alectoris chukar), from hatching up to 120?d, the growth rate and development of body mass, wing, tarsus, and bill length were measured and fitted by Gompertz equations.

2. As a typical precocial species, partridges hatched with relatively well developed legs and bills, and wing growth followed a gradual development of thermoregulation.

3. Gompertz growth constants for body mass growth were 0·039 and 0·038 for grey partridges and chukars, respectively.

4. The allometric relationship between tarsus length and body mass followed a geometric similarity (1/3 power) in both grey partridges and chukars.  相似文献   

13.
The pharmacokinetic properties of the fluoroquinolone levofloxacin (LFX) were investigated in six dogs after single intravenous, oral and subcutaneous administration at a dose of 2.5, 5 and 5 mg/kg, respectively. After intravenous administration, distribution was rapid (T½dist 0.127 ± 0.055 hr) and wide as reflected by the volume of distribution of 1.20 ± 0.13 L/kg. Drug elimination was relatively slow with a total body clearance of 0.11 ± 0.03 L kg?1 hr?1 and a T½ for this process of 7.85 ± 2.30 hr. After oral and subcutaneous administration, absorption half‐life and Tmax were 0.35 and 0.80 hr and 1.82 and 2.82 hr, respectively. The bioavailability was significantly higher (p ? 0.05) after subcutaneous than oral administration (79.90 vs. 60.94%). No statistically significant differences were observed between other pharmacokinetic parameters. Considering the AUC24 hr/MIC and Cmax/MIC ratios obtained, it can be concluded that LFX administered intravenously (2.5 mg/kg), subcutaneously (5 mg/kg) or orally (5 mg/kg) is efficacious against Gram‐negative bacteria with MIC values of 0.1 μg/ml. For Gram‐positive bacteria with MIC values of 0.5 μg/kg, only SC and PO administration at a dosage of 5 mg/kg showed to be efficacious. MIC‐based PK/PD analysis by Monte Carlo simulation indicates that the proposed dose regimens of LFX, 5 and 7.5 mg/kg/24 hr by SC route and 10 mg/kg/24 hr by oral route, in dogs may be adequate to recommend as an empirical therapy against S. aureus strains with MIC ≤ 0.5 μg/ml and E. coli strains with MIC values ≤0.125 μg/ml.  相似文献   

14.
The pharmacokinetics of florfenicol (FF) and thiamphenicol (TP) after single intravenous (IV) and oral (PO) administration was investigated in Mulard ducks. Both antibiotics were administered at a dose of 30 mg/kg body weight, and their concentrations in plasma samples were assayed using high‐performance liquid chromatography with ultraviolet detection. Pharmacokinetic parameters were calculated using a noncompartmental method. After IV administration, significant differences were found for the mean residence time (2.25 ± 0.21 hr vs. 2.83 ± 0.50 hr for FF and TP, respectively) and the general half‐life (1.56 ± 0.15 hr vs. 1.96 ± 0.35 hr for FF and TP, respectively) indicating slightly slower elimination of TP as compared to FF. The clearance, however, was comparable (0.30 ± 0.07 L/hr/kg for FF and 0.26 ± 0.04 L/hr/kg for TP). The mean volume of distribution was below 0.7 L/kg for both drugs. Pharmacokinetics after PO administration was very similar for FF and TP suggesting minor clinical importance of the differences found in the IV study. Both antimicrobials showed rapid absorption and bioavailability of more than 70% indicating that PO route should be an efficient method of FF and TP administration to ducks under field conditions.  相似文献   

15.
The objectives of this study were to describe the pharmacokinetics of firocoxib following oral (PO) dosing and intravenous (IV) injection in sows. Seven healthy sows were administered 0.5 mg firocoxib/kg IV. Following a 23-d washout period, sows were administered firocoxib at 4.0 mg firocoxib/kg PO. Blood samples were collected at predetermined times for 72 hr after IV and 120 hr after PO administration. Plasma firocoxib concentration was measured using UPLC-MS/MS, and pharmacokinetic analysis was performed using noncompartmental procedures. Tissue firocoxib concentrations were determined at 5, 10 (n = 2/time point), and 21 d (n = 3) after PO administration. The geometric mean half-life following IV and PO administration was 16.6 and 22.5 hr, respectively. A mean peak plasma concentration (Cmax) of 0.06 µg/ml was recorded at 7.41 hr (Tmax) after oral administration. Mean oral bioavailability was determined to be 70.3%. No signs of NSAID toxicity were observed on macroscopic and microscopic investigation. Firocoxib was detected in the skin with subcutaneous fat (0.02 µg/g) of one of three sows at 21 days postadministration. Additional work to establish appropriate meat withhold intervals in sows is required. Firocoxib was readily absorbed following PO administration. Further work is needed to better understand the analgesic effects for sows and piglets nursing sows administered firocoxib.  相似文献   

16.
Intravenous benzodiazepines are utilized as first‐line drugs to treat prolonged epileptic seizures in dogs and alternative routes of administration are required when venous access is limited. This study compared the pharmacokinetics of midazolam after intravenous (IV), intramuscular (IM), and rectal (PR) administration. Six healthy dogs were administered 0.2 mg/kg midazolam IV, IM, or PR in a randomized, 3‐way crossover design with a 3‐day washout between study periods. Blood samples were collected at baseline and at predetermined intervals until 480 min after administration. Plasma midazolam concentrations were measured by high‐pressure liquid chromatography with UV detection. Rectal administration resulted in erratic systemic availability with undetectable to low plasma concentrations. Arithmetic mean values ± SD for midazolam peak plasma concentrations were 0.86 ± 0.36 μg/mL (C0) and 0.20 ± 0.06 μg/mL (Cmax), following IV and IM administration, respectively. Time to peak concentration (Tmax) after IM administration was 7.8 ± 2.4 min with a bioavailability of 50 ± 16%. Findings suggest that IM midazolam might be useful in treating seizures in dogs when venous access is unavailable, but higher doses may be needed to account for intermediate bioavailability. Rectal administration is likely of limited efficacy for treating seizures in dogs.  相似文献   

17.
Pharmacokinetics and pharmacodynamics of alfaxalone was performed in mallard ducks (Anas platyrhynchos) after single bolus injections of 10 mg/kg administered intramuscularly (IM; n = 10) or intravenously (IV; n = 10), in a randomized cross‐over design with a washout period between doses. Mean (±SD) Cmax following IM injection was 1.6 (±0.8) µg/ml with Tmax at 15.0 (±10.5) min. Area under the curve (AUC) was 84.66 and 104.58 min*mg/ml following IV and IM administration, respectively. Volume of distribution (VD) after IV dose was 3.0 L/kg. The mean plasma clearance after 10 mg/kg IV was 139.5 (±67.9) ml min?1 kg?1. Elimination half‐lives (mean [±SD]) were 15.0 and 16.1 (±3.0) min following IV and IM administration, respectively. Mean bioavailability at 10 mg/kg IM was 108.6%. None of the ducks achieved a sufficient anesthetic depth for invasive procedures, such as surgery, to be performed. Heart and respiratory rates measured after administration remained stable, but many ducks were hyperexcitable during recovery. Based on sedation levels and duration, alfaxalone administered at dosages of 10 mg/kg IV or IM in mallard ducks does not induce clinically acceptable anesthesia.  相似文献   

18.
The purpose of this study was to determine the pharmacokinetics of cefquinome (CFQ) following single and repeated subcutaneous (SC) administrations in sheep. Six clinically healthy, 1.5 ± 0.2 years sheep were used for the study. In pharmacokinetic study, the crossover design in three periods was performed. The withdrawal interval between the study periods was 15 days. In first period, CFQ (Cobactan, 2.5%) was administered by an intravenous (IV) bolus (3 sheep) and SC (3 sheep) injections at 2.5 mg/kg dose. In second period, the treatment administration was repeated via the opposite administration route. In third period, CFQ was administrated subcutaneously to each sheep (n = 6) at a dose of 2.5 mg/kg q. 24 hr for 5 days. Plasma concentrations of CFQ were measured using the HPLC‐UV method. Pharmacokinetic parameters were calculated using non‐compartmental methods. The elimination half‐life and mean residence time of CFQ after the single SC administration were longer than IV administration (< 0.05). Bioavailability (F%) of CFQ following the single SC administration was 123.51 ± 11.54%. The area under the curve (AUC0‐∞) and peak concentration following repeated doses (last dose) were higher than those observed after the first dose (< 0.05). CFQ accumulated after repeated SC doses. CFQ can be given via SC at a dose of 2.5 mg/kg every 24 hr for the treatment of infections caused by susceptible pathogens, which minimum inhibitory concentration is ≤1.0 μg/ml in sheep.  相似文献   

19.
Sulpiride (SLP) is an antipsychotic drug used in humans. Although no pharmacokinetic data are available for horses, it is commonly used to encourage ovulation in noncycling mares and to stimulate lactation in adoptive mares. The aim of this study is to assess the pharmacokinetics profile of SLP after intravenous (IV), intramuscular (IM), and oral (PO) administrations in normal horses. Animals (n = 6) were treated with 1 mg/kg SLP, administered by IV, IM, and PO routes according to a randomized crossover design (3 × 3 Latin square). Blood samples (5 mL) were collected at a programmed time and analyzed using a validated with fluorescence detection method. SLP was present at a detectable concentration up to 24 hours postadministration for all routes, except for one animal in the PO group. IV and IM administrations gave similar curves, with an IM average bioavailability of 118.0%. These high values were mainly the result of the profile generated by two horses, in which a secondary concentration peak occurred in the terminal phase of the curve. After PO administration, AUC0-∞, and consequently bioavailability (20.4%), was low. This finding could be owing to the physicochemical features of the drug. Indeed, considering that SLP is a weak base, existing in the ionized form at gastric and physiological pH, it is unsurprising that it is poorly absorbable, especially in horses with a particularly acidic gastric pH. In conclusion, injective routes are definitely preferable to PO dosing because of the low bioavailability using this route.  相似文献   

20.
Seven live 5-to-6-wk-old chukar partridges (Alectoris chukar) were examined because of increased lacrimation, swollen eyelids, and increased mortality. Gross lesions consisted of mildly enlarged and mottled white spleens, swollen eyelids with external scab formation, and watery intestinal contents. Microscopically, there were increased numbers of mononuclear phagocytic system cells in the spleen, some of which contained faintly staining basophilic intranuclear inclusion bodies, blepharoconjunctivitis, enteritis associated with coccidia and crop mycosis. Transmission electron microscopy of the spleen revealed icosahedral virus particles 65 to 75 nm in diameter, consistent with the morphology of adenovirus. Three out of seven chukars were positive for hemorrhagic enteritis virus by serology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号