首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   12篇
畜牧兽医   26篇
  2021年   1篇
  2020年   8篇
  2019年   2篇
  2018年   4篇
  2017年   6篇
  2016年   3篇
  2015年   2篇
排序方式: 共有26条查询结果,搜索用时 18 毫秒
1.
The objective of this study was to investigate the toxicokinetic characteristics of melamine in broilers due to the limited information available for livestock. Melamine was then administered to broiler chickens at an intravenous (i.v.) or oral (p.o.) dosage of 5.5 mg/kg of body weight, and plasma samples were collected up to 48 h. The concentration of melamine in each plasma sample was analyzed using liquid chromatography‐tandem mass spectrometry (LC‐MS/MS). Melamine was measurable up to 24 h after i.v. and p.o. administration. A one‐compartment model was developed to describe the toxicokinetics of melamine in broilers. Following i.v. administration, the values for the elimination half‐life (t1/2β), the volume of distribution (Vd), and the clearance (CL) were 4.42 ± 1.02 h, 00.52 ± 0.18 L/kg, and 0.08 ± 0.01 L/h/kg, respectively. The absolute oral bioavailability (F) was 95.63 ± 3.54%. The results suggest that most of the administered melamine is favorably absorbed from the alimentary tract and rapidly cleared by the kidneys in broiler chickens.  相似文献   
2.
Mycotoxins are secondary fungal metabolites that are typically present in grain and feed ingredients used for animal feeds. An analytical method using LC-ESI-MS/MS was developed to quantify nine mycotoxins, consisting of aflatoxin B1 (AFB1), AFB2, AFG1, AFG2, T-2 toxin, deoxynivalenol (DON), nivalenol (NIV), zearalenone (ZEA) and ochratoxin A (OTA) in broiler feeds. In total, 100 samples of broiler feeds were collected from poultry farms in Central Thailand. The survey found that AFB1 and ZEA were the most prevalent mycotoxins in the feed samples at percentages of 93% and 63%, respectively. The limit of detections (LODs) of investigated mycotoxins was 0.20–0.78 ng/g. AFB2, DON, AFG1, NIV and T-2 toxin were also detectable at low contamination levels with percentages of 20%, 9%, 7%, 5% and 1%, respectively, whereas OTA and AFG2 were not detected in any of the feed samples. These results suggest that there is a very low level of risk of the exposure to mycotoxins in feeds obtained from broiler farms in Central Thailand.  相似文献   
3.
This study was performed to determine pharmacokinetic profiles of the two active metabolites of the analgesic drug metamizole (dipyrone , MET), 4‐methylaminoantipyrine (MAA), and 4‐aminoantipyrine (AA), after intravenous (i.v., intramuscular (i.m.), and oral (p.o.) administration in cats. Six healthy mixed‐breed cats were administered MET (25 mg/kg) by i.v., i.m., or p.o. routes in a crossover design. Adverse clinical signs, namely salivation and vomiting, were detected in all groups (i.v. 67%, i.m. 34%, and p.o. 15%). The mean maximal plasma concentration of MAA for i.v., i.m., and p.o. administrations was 148.63 ± 106.64, 18.74 ± 4.97, and 20.59 ± 15.29 μg/ml, respectively, with about 7 hr of half‐life in all routes. Among the administration routes, the area under the plasma concentration curve (AUC) value was the lowest after i.m. administration and the AUCEV/i.v. ratio was higher in p.o. than the i.m. administration without statistical significance. The plasma concentration of AA was detectable up to 24 hr, and the mean plasma concentrations were smaller than MAA. The present results suggest that MET is converted into the active metabolites in cats as in humans. Further pharmacodynamics and safety studies should be performed before any clinical use.  相似文献   
4.
Levosulpiride (LSP) is the l‐enantiomer of sulpiride, and LSP recently replacing sulpiride in several EU countries. Several studies about LSP in humans are present in the literature, but neither pharmacodynamic nor pharmacokinetic data of LSP is present for veterinary species. The aim of this study was to assess the pharmacokinetic profile of LSP after intravenous (IV), intramuscular (IM), and oral (PO) administration in goats. Animals (n = 6) were treated with 50 mg LSP by IV, IM, and PO routes according to a randomized cross‐over design (3 × 3 Latin‐square). Blood samples were collected prior and up to 24 hr after LSP administration and quantified using a validated HPLC method with fluorescence detection. IV and IM administration gave similar concentration versus time curve profiles. The IM mean bioavailability was 66.97%. After PO administration, the drug plasma concentrations were detectable only in the time range 1.5–4 hr, and the bioavailability (4.73%) was low. When the AUC was related to the administered dose in mg/kg, there was a good correlation in the IV and IM groups, but very low correlation for the PO route. In conclusion, the IM and IV administrations result in very similar plasma concentrations. Oral dosing of LSP in goats is probably not viable as its oral bioavailability was very low.  相似文献   
5.
The purpose of this study was to investigate the pharmacokinetic characteristics of amoxicillin (AMX) trihydrate in male Asian elephants, Elephas maximus, following intramuscular administration at two dosages of 5.5 and 11 mg/kg body weight (b.w.). Blood samples were collected from 0.5 up to 72 h. The concentration of AMX in elephant plasma was measured using liquid chromatography electrospray ionization mass spectrometry. AMX was measurable up to 24 h after administration at two dosages. Peak plasma concentration (Cmax) was 1.20 ± 0.39 μg/mL after i.m. administration at a dosage of 5.5 mg/kg b.w., whereas it was 3.40 ± 0.63 μg/mL at a dosage of 11 mg/kg b.w. A noncompartment model was developed to describe the disposition of AMX in Asian elephants. Based on the preliminary findings found in this research, the dosage of 5.5 and 11 mg/kg b.w. produced drug plasma concentrations higher than 0.25 mg/mL for 24 h after i.m. administration. Thereafter, i.m. administration with AMX at a dosage of 5.5 mg/kg b.w. appeared a more suitable dose than 11 mg/kg b.w. However, more studies are needed to determine AMX clinical effectiveness in elephants.  相似文献   
6.
The purpose of this study was two-fold: I) to determine the pharmacokinetic profile of meloxicam (MLX) in geese after intravenous (IV) and oral (PO) administration and II) to assess tissue residues in muscle, heart, liver, lung, and kidney. Ten clinically normal female Bilgorajska geese were divided into two groups (treated, n = 8; control, n = 2). Group 1 underwent a 3-phase parallel study with a 1-week washout period. In phase I, animals received MLX (0.5 mg/kg) by IV administration; the blood was collected up to 48 hr. In phases II and III geese were treated orally at the same dosage for the collection of blood and tissue samples, respectively. Group 2 served as control. After the extraction procedure, a validated HPLC method with UV detection was used for plasma and organ analysis. The plasma concentrations were quantifiable up to 24 hr after both the administrations. The elimination phase of MLX from plasma was similar in both the administration groups. The clearance was slow (0.00975 L/hr*Kg), the volume of distribution small (0.0487 L/kg), and the IV half-life was 5.06 ± 2.32 hr. The average absolute PO bioavailability was 64.2 ± 24.0%. Residues of MLX were lower than the LOQ (0.1 µg/kg) in any tested tissue and at any collection time. The dosage used in this study achieved the plasma concentration, which provides analgesia in Hispaniolan Amazon parrots for 5 out of 24 hr after PO administration. MLX tissue concentrations were below the LOD of the assay in tissue (0.03 µg/ml). A more sensitive technique might be necessary to determine likely residue concentrations in tissue.  相似文献   
7.
Limited pharmacokinetic information to establish suitable therapeutic plans is available for green sea turtles. Therefore, the present study was conducted to evaluate the pharmacokinetic characteristics of marbofloxacin (MBF) in the green sea turtle, Chelonia mydas, following single intravenous (i.v.) or intramuscular (i.m.) administration at two dosages of 2 and 4 mg/kg body weight (b.w.). Blood samples were collected at assigned times up to 168 hr. MBF in plasma was extracted using liquid–liquid extraction and analyzed by a validated high-performance liquid chromatography (HPLC). MBF was quantifiable from 15 min to 96 hr after i.v. and i.m. administrations at two dose rates. A noncompartmental model was used to fit the plasma concentration of MBF versus time curve for each green sea turtle. The t1/2λz value, similar for both the dosages (22–28 hr), indicated that the overall rate of elimination of MBF in green sea turtles is relatively slow. The average i.m. F% ranged 88%–103%. MBF is a concentration-dependent drug and the AUC/MIC ratio is the best PK/PD predictor for its efficacy. The MBF dosage of 4 mg/kg appeared to produce an appropriate value of the PK-PD surrogate that predicts antibacterial success for disease caused by susceptible bacteria. In contrast, i.m. administration of MBF at a dosage of 2 mg/kg b.w. was not found to produce a suitable PK-PD surrogate index. However, further studies of multiple doses and plasma binding proteins are warranted to confirm an appropriate dosage regimen.  相似文献   
8.
The aim of the present study was to elucidate the pharmacokinetic profiles of amoxicillin trihydrate (AMX) in Siamese freshwater crocodiles (Crocodylus siamensis). Crocodiles were administered a single intramuscular injection of AMX, at a dose of either 5 or 10 mg/kg body weight (b.w.). Blood samples were collected at preassigned times up to 120 hr. The plasma concentrations of AMX were measured using a validated liquid chromatography tandem-mass spectrometry method. AMX plasma concentrations were quantifiable for up to 72 hr (5 mg/kg b.w.) and 96 hr (10 mg/kg b.w.). The elimination half-life (t1/2λz) of AMX following dosing at 5 mg/kg b.w. (8.72 ± 0.61 hr) was almost identical to that following administration at 10 mg/kg b.w (8.98 ± 1.13 hr). The maximum concentration and area under the curve from zero to the last values of AMX increased in a dose-dependent fashion. The average binding percentage of AMX to plasma protein was 21.24%. Based on the pharmacokinetic data, susceptibility break point, and the surrogate PK-PD index (T > MIC, 0.25 μg/ml), intramuscular administration of AMX at dose of 5 mg/kg b.w. every 4 days might be appropriate for the treatment of susceptible bacterial infections in freshwater crocodiles.  相似文献   
9.
Metamizole (MT) is an analgesic and antipyretic drug labelled for use in humans, horses, cattle, swine and dogs. MT is rapidly hydrolysed to the active primary metabolite 4‐methylaminoantipyrine (MAA). MAA is formed in much larger amounts compared with other minor metabolites. Among the other secondary metabolites, 4‐aminoantipyrine (AA) is also relatively active. The aim of this research was to evaluate the pharmacokinetic profiles of MAA and AA after dose of 25 mg/kg MT by intravenous (i.v.) and intramuscular (i.m.) routes in healthy horses. Six horses were randomly allocated to two equally sized treatment groups according to a 2 × 2 crossover study design. Blood was collected at predetermined times within 24 h, and plasma was analysed by a validated HPLC‐UV method. No behavioural changes or alterations in health parameters were observed in the i.v. or i.m. groups of animals during or after (up to 7 days) drug administration. Plasma concentrations of MAA after i.v. and i.m. administrations of MT were detectable from 5 min to 10 h in all the horses. Plasma concentrations of AA were detectable in the same range of time, but in smaller amounts. Maximum concentration (Cmax), time to maximum concentration (Tmax) and AUMC0‐last of MAA were statistically different between the i.v. and i.m. groups. The AUCIM/AUCIV ratio of MAA was 1.06. In contrast, AUC0‐last of AA was statistically different between the groups (< 0.05) with an AUCIM/AUCIV ratio of 0.54. This study suggested that the differences in the MAA and AA plasma concentrations found after i.m. and i.v. administrations of MT might have minor consequences on the pharmacodynamics of the drug.  相似文献   
10.
Metamizole (MT), an analgesic and antipyretic drug, is rapidly hydrolyzed to the active primary metabolite 4‐methylaminoantipyrine (MAA) and relatively active secondary metabolite 4‐aminoantipyrine (AA). The aim of this study was to assess the pharmacokinetic profiles of MAA and AA after dose of 25 mg/kg MT by intravenous (i.v.), intramuscular (i.m.), oral (p.o.), and rectal (RC) routes in dogs. Six dogs were randomly allocated to an open, single‐dose, four‐treatment, four‐phase, unpaired, crossover study design. Blood was collected at predetermined times within 24 hr, and plasma was analyzed by a validated HPLC‐UV method. Plasma concentrations of MAA and AA after i.v., i.m., p.o., and RC administrations of MT were detectable from 5 (i.v. and i.m.) or 30 (p.o. and RC) min to 24 hr in all dogs. The highest concentrations of MAA were found in the i.v., then i.m., p.o., and RC groups. Plasma concentrations of AA were similar for i.v., i.m., and RC, and the concentrations were approximately double those in the PO groups. The AUCEV/IV ratio for MAA was 0.75 ± 0.11, 0.59 ± 0.08, and 0.32 ± 0.05, for i.m., p.o., and RC, respectively. The AUCEV/IV ratio for AA was 1.21 ± 0.33, 2.17 ± 0.62, and 1.08 ± 0.19, for i.m., p.o., and RC, respectively. Although further studies are needed, rectal administration seems to be the least suitable route of administration for MT in the dog.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号