首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
针对饲粮非淀粉多糖(NSP)酶的海量筛选工作和动物试验间的可比性差等问题,本研究探讨使用体外模拟法优化生长猪玉米-豆粕型饲粮和玉米-杂粕型饲粮的NSP酶谱。首先采用单因素随机试验设计,研究NSP酶的添加水平与饲粮体外干物质消化率(IVDMD)的关系。在玉米-豆粕型饲粮和玉米-杂粕型饲粮中分别添加不同水平的纤维素酶、木聚糖酶、β-葡聚糖酶、β-甘露聚糖酶、α-半乳糖苷酶和果胶酶6种NSP酶,分析各NSP酶对饲粮IVDMD的作用效果。然后采用二次回归旋转正交组合试验设计,筛选2种饲粮中6种NSP酶的最佳酶谱。结果表明:1)6种NSP酶的添加水平与2种类型猪饲粮IVDMD之间存在二次曲线关系。2)α-半乳糖苷酶对玉米-豆粕型饲粮的IVDMD提升最高,达到了1.28%,木聚糖酶对玉米-杂粕型饲粮的IVDMD提升最高,达到了1.95%。3)玉米-豆粕型饲粮的最佳酶谱为:纤维素酶533.6 U/kg、木聚糖酶9 983.7 U/kg、β-葡聚糖酶1 014.4 U/kg、β-甘露聚糖酶4 080.6 U/kg、α-半乳糖苷酶251.6 U/kg和果胶酶107.3 U/kg。玉米-杂粕型饲粮的最佳酶谱为:纤维素酶960.0 U/kg、木聚糖酶17 177.6 U/kg、β-葡聚糖酶405.8 U/kg、β-甘露聚糖酶19 023.2U/kg、α-半乳糖苷酶307.2 U/kg和果胶酶96.9 U/kg。4)优化后的酶谱使玉米-豆粕型饲粮的IVDMD提升了3.26%,使玉米-杂粕型饲粮的IVDMD提升了3.75%。由此可见,6种NSP酶联合使用能够更大程度地提高生长猪玉米-豆粕型饲粮和玉米-杂粕型饲粮的IVDMD。  相似文献   

2.
旨在探讨使用体外法模拟猪饲粮胃肠道消化,优化生长猪玉米-豆粕-DDGS饲粮和小麦-豆粕饲粮的非淀粉多糖(NSP)酶谱。试验首先采用单因素完全随机设计,在玉米-豆粕-DDGS饲粮和小麦-豆粕饲粮中分别添加不同水平的单一NSP酶:纤维素酶、木聚糖酶、β-甘露聚糖酶、α-半乳糖苷酶、β-葡聚糖酶和果胶酶,采用基于生长猪生理消化的模拟胃液-小肠液体外法对饲粮体外干物质消化率(in vitro dry matter digestibility,IVDMD)进行测定,分析各NSP酶对饲粮IVDMD的作用效果。然后采用二次回归通用旋转设计,分别建立两种饲粮IVDMD与6种NSP酶的回归关系,筛选两种饲粮中6种NSP酶的最佳组合,再对优化的酶谱组合进行体外验证。结果显示:1)生长猪玉米-豆粕-DDGS饲粮和小麦-豆粕饲粮的IVDMD与6种NSP酶的添加水平之间均存在二次曲线关系;2)在本试验条件下,玉米-豆粕-DDGS饲粮的最佳酶谱:纤维素酶427.1U·kg~(-1)、木聚糖酶7 057.5U·kg~(-1)、β-甘露聚糖酶3 587.8U·kg~(-1)、α-半乳糖苷酶202.1U·kg~(-1)、β-葡聚糖酶1 543.3U·kg~(-1)和果胶酶72.7U·kg~(-1)。小麦-豆粕饲粮的最佳酶谱:纤维素酶1 117.9 U·kg~(-1)、木聚糖酶35 087.7 U·kg~(-1)、β-甘露聚糖酶1 917.1U·kg~(-1)、α-半乳糖苷酶305.0U·kg~(-1)、β-葡聚糖酶806.7U·kg~(-1)和果胶酶133.7U·kg~(-1);3)优化后的NSP酶谱组合使玉米-豆粕-DDGS饲粮的IVDMD提升了3.89%;使小麦-豆粕饲粮的IVDMD提升了3.48%。结果表明,体外法优化后的NSP酶谱组合和配伍能更大程度地提高生长猪玉米-豆粕-DDGS饲粮和小麦-豆粕饲粮的IVDMD,基于生长猪生理消化的模拟胃液-小肠液体外消化法可快速筛选出生长猪饲粮合理的NSP酶谱。  相似文献   

3.
本试验研究小麦-豆粕型日粮中添加不同组合的非淀粉多糖酶对肉鸡生产及营养物质消化代谢的影响。选用1日龄AA肉鸡360羽,随机分为6组,分别饲喂小麦型高能饲粮、小麦型低能饲粮和添加不同酶制剂组合的小麦低能饲粮,每组4个重复,每重复15只鸡。结果表明:小麦型低能日粮中添加木聚糖酶对肉鸡生产性能及表观代谢能没有显著影响;添加木聚糖酶+葡聚糖酶、木聚糖酶+葡聚糖酶+甘露聚糖酶、木聚糖酶+葡聚糖酶+甘露聚糖酶+纤维素酶组合均可显著改善低能饲养肉鸡日增重和饲料利用率、提高其表观代谢能(P0.05),其中以添加木聚糖酶+葡聚糖酶+甘露聚糖酶组合和木聚糖酶+葡聚糖酶+甘露聚糖酶+纤维素酶组合两组对肉鸡生产的效果最好,但不同酶制剂组合间无显著差异(P0.05)。  相似文献   

4.
本试验旨在研究用于肉鸡小麦-豆粕型饲粮的木聚糖酶、β-葡聚糖酶、纤维素酶、植酸酶复配的最佳酶谱组合。试验首先采用单因素完全随机试验设计,将木聚糖酶、β-葡聚糖酶、纤维素酶、植酸酶分别设定6个水平添加到肉鸡小麦-豆粕型饲粮中,采用模拟胃肠液体外消化试验,研究单酶的最佳剂量;然后根据各单酶最佳添加量,将4种单酶分别设定3个水平:木聚糖酶(750、800、850 U/g),β-葡聚糖酶(50、100、150 U/g),纤维素酶(700、750、800 U/g),植酸酶(1 000、1 500、2 000 U/kg),采用4因子3水平L9(34)正交设计,设置9种组合方式,以净还原糖生成量、植酸磷降解率、饲粮残渣总能为检测指标,确定4种单酶复配的最佳酶谱组合。结果表明:肉鸡小麦-豆粕型饲粮中木聚糖酶、β-葡聚糖酶、纤维素酶和植酸酶的最佳添加量,0~3周龄分别为800、130、770、1 360 U/kg;4~6周龄分别为800、130、790、1 470 U/kg;4种单酶组合的最佳酶谱均为木聚糖酶850 U/g、纤维素酶750 U/g、β-葡聚糖酶50 U/g、植酸酶2 000 U/kg。  相似文献   

5.
饲用复合酶固态发酵生产工艺探讨   总被引:2,自引:0,他引:2  
固态发酵生产饲用酶的原料一般是廉价的农副产品,如各种草粉、糠麸、豆粕、杂粕及食品工业下脚料等,这些原料中含有纤维素、木聚糖、果胶、β-1,3-1,4葡聚糖、蛋白质、淀粉等,其发酵产物是多种酶(乌敏辰,2003)。该酶系组成很适合对各种饲料的降解。当以草粉为主,其他原料为辅生产纤维素酶时,除纤维素酶外,还生产木聚糖酶、果胶酶、β-1,3-1,4葡聚糖酶、蛋白酶等;当以麸皮、豆粕为主,其他原料为辅生产蛋白酶时,除蛋白酶外还产生果胶酶、木聚糖酶、β-1,3-1,4葡聚糖酶、β-甘露聚糖酶、糖化酶、纤维素酶,且大部分酶活力都能达到饲用酶标准,只…  相似文献   

6.
研究运用单因素设计和响应面设计,采用胃蛋白酶-胰液素两步水解法,探讨3种不同的非淀粉多糖酶对肉鸭饲料还原糖含量的影响。实验使用相同的肉鸭基础饲粮,对添加了非淀粉多糖酶的肉鸭饲粮使用两步离体法进行消化,并测定还原糖含量,得出三种非淀粉多糖酶的最佳添加量和最佳酶谱组成。结果表明肉鸭饲粮的最佳非淀粉多糖酶酶谱:甘露聚糖酶为0.015 mg/g、β-葡聚糖酶为0.008 mg/g、木聚糖酶为0.007 mg/g。在肉鸭饲粮中添加非淀粉多糖酶可以提高还原糖含量,促进营养物质的吸收和利用。  相似文献   

7.
文章旨在研究4种单体NSP酶制剂(木聚糖酶、β-葡聚糖酶、纤维素酶和甘露聚糖酶),经过预消化处理工艺后,对肉鸡日粮中的非淀粉多糖的酶解情况,为进一步研究NSP酶制剂在肉鸡日粮中的合理利用提供参考依据。结果显示,不同的NSP酶添加量对肉鸡日粮的预消化处理效果有着显著的相关关系,木聚糖酶、β-葡聚糖酶、纤维素酶、甘露聚糖酶的最佳添加水平分别为250、350、300、200 mg/kg;初步确定的预消化处理参数是:温度45℃、时间60 min、水分35%。本试验条件下,结合相关的数据分析,试验日粮中最佳酶制剂组合是:木聚糖酶186 mg/kg、β-葡聚糖酶440 mg/kg、纤维素酶337 mg/kg、甘露聚糖酶200 mg/kg(P<0.01)。研究表明,加酶日粮经过预消化处理后,可以有效地降解其中日粮的非淀粉多糖,提高日粮的营养利用率。  相似文献   

8.
本试验旨在研究β-葡聚糖酶、木聚糖酶、纤维素酶和植酸酶用于肉鸡小麦型饲粮的最佳复合酶谱。采用单因素完全随机试验设计,将不同水平的β-葡聚糖酶(30、60、90、120、150和180 U/g)、木聚糖酶(200、400、600、800、1 000和1 200 U/g)、纤维素酶(200、400、600、800、1 000和1 200 U/g)和植酸酶(500、1 000、1 500、2 000、2 500和3 000 U/kg)分别添加于肉鸡小麦型饲粮中,采用模拟胃肠液体外消化试验,研究单酶的最佳添加水平;据此,采用4因子3水平L9(34)正交设计和体外法研究4种单酶复配效应,每种酶各设计3个添加水平:β-葡聚糖酶为100、150和200 U/g,木聚糖酶为900、950和1 000 U/g,纤维素酶为900、950和1 000 U/g,植酸酶为1 500、2 000和2 500 U/kg,以还原糖生成量、植酸磷降解率、饲料残渣总能为判定指标,确定4种单酶的最佳复合酶谱。结果表明:1~3周龄肉鸡小麦型饲粮中,当β-葡聚糖酶、木聚糖酶、纤维素酶添加水平分别为150、960、950 U/g时,分别获得最大还原糖生成量0.918、1.161、0.927 mg/g,当植酸酶添加水平为2 010 U/kg时,获得最大植酸磷降解率92.35%;4~6周龄肉鸡小麦型饲粮中,当β-葡聚糖酶、木聚糖酶、纤维素酶添加水平分别为150、950、960 U/g时,分别获得最大还原糖生成量0.920、1.160、0.929 mg/g,当植酸酶添加水平为1 940 U/kg时,获得最大植酸磷降解率92.23%;当4种酶的复合酶谱为β-葡聚糖酶150 U/g、木聚糖酶950 U/g、纤维素酶900 U/g、植酸酶2 500 U/kg时,还原糖生成量、植酸磷降解率、饲料残渣总能均获得较优值。综上,肉鸡小麦型饲粮中β-葡聚糖酶、木聚糖酶、纤维素酶和植酸酶的最佳添加水平,1~3周龄分别为150、960、950 U/g和2 010 U/kg,4~6周龄分别为150、950、960 U/g和1 940 U/kg,且2个阶段肉鸡小麦型饲粮中4种酶的最佳复合酶谱为β-葡聚糖酶150 U/g、木聚糖酶950 U/g、纤维素酶900 U/g、植酸酶2 500 U/kg。  相似文献   

9.
非淀粉多糖(NSP)酶包括半纤维素酶、纤维素酶和果胶酶,其中,半纤维素酶主要包括木聚糖酶、甘露聚糖酶、阿拉伯聚糖酶和半乳糖酶;纤维素酶包括C1酶、CX酶和β-葡聚糖酶.近年来,动物营养研究表明,NSP酶具有降低食糜黏度、破碎细胞壁、调节代谢激素的分泌等功能.  相似文献   

10.
1酶制剂自从1975年美国饲料工业首次把酶制剂作为添加剂应用于配合饲料中并取得显著效果后,饲用酶制剂日益受到世界养殖业的重视。在中国市场上,主要有以α-淀粉酶为代表的消化性酶和以木聚糖酶、果胶酶、甘露聚糖酶、β-葡聚糖酶、纤维素酶等非淀粉多糖酶和植酸酶为代表的非消化性酶。尤其是在去年小麦型日粮的普遍使用,酶制剂更为广大用户所接受。王继强在研究NSP酶制剂在蛋鸡小麦型日粮中的应用效果时发现随着小麦基础日粮中NSP酶  相似文献   

11.
本研究旨在探讨添加不同酶制剂对全株玉米青贮发酵品质的影响,以蜡熟期刈割的全株玉米为材料,设对照组和6个处理组,处理组分别添加5 g/kg纤维素酶、木聚糖酶、果胶酶、α-半乳糖苷酶、β-甘露聚糖酶和β-葡聚糖酶,每组3个重复,青贮56 d后对全株玉米青贮饲料的感官评定、发酵品质、营养成分进行比较分析。结果显示:纤维素酶组、木聚糖酶组和β-葡聚糖酶组全株玉米青贮饲料的青贮效果较好;与对照组相比,纤维素酶组、木聚糖酶组和β-葡聚糖酶组可显著提高青贮饲料碳水化合物(WSC)和乳酸的含量(P0.05),同时使青贮氨态氮/总氮显著降低(P0.05),青贮发酵品质较好;添加纤维素酶的全株玉米青贮中干物质(DM)含量高于对照组和其他处理组,添加纤维素酶和α-半乳糖苷酶处理的粗蛋白质(CP)含量较高;添加纤维素酶的酸性洗涤纤维(ADF)和β-葡聚糖酶组青贮中性洗涤纤维(NDF)、ADF均显著低于对照组(P0.05)。综上表明:纤维素酶、木聚糖酶和β-葡聚糖酶更适于用作全株玉米青贮饲料的添加剂。  相似文献   

12.
<正>饲用复合酶是一类水解酶,包括淀粉酶、蛋白酶、脂肪酶、植酸酶、纤维素酶、木聚糖酶、果胶酶、β-葡聚糖酶、甘露聚糖酶等多种酶。在单胃动物消化道内没有分  相似文献   

13.
在过去,人们对饲用酶制剂能否提高反刍动物饲料消化率一直争论不休。然而,最近的许多研究表明,将饲用酶添加到反刍动物日粮中,可以显著提高生产性能并减少营养物质的浪费。本文主要是总结以往的观点,并讨论现阶段饲用酶在泌乳奶牛上的应用。1饲用酶的种类和重要性1.1种类目前市场上销售的饲用酶制剂大体分为两类:复合酶制剂和植酸酶。复合酶制剂大多由非淀粉多糖酶(NSP酶)构成,部分产品还含有一些消化酶。NSP酶包括半纤维素酶、纤维素酶和果胶酶。半纤维素酶主要包括木聚糖酶、β-葡聚糖酶、甘露聚糖酶等。表(1)列出了主要的饲用酶、它们…  相似文献   

14.
本试验旨在采用体内法和体外法评估辽东栎籽实(QLS)在生长猪饲粮中的营养价值。试验共由3个试验组成:试验1测定基础饲粮添加10%和20%QLS对生长猪饲粮养分消化率的影响,并采用套算法计算QLS在猪上的消化能值;试验2采用单胃动物仿生消化系统(SDS-Ⅲ),测定饲粮添加2%、6%和10%QLS对猪饲粮养分消化率的影响;试验3选择在6%QLS饲粮(对照组)基础上分别添加6 mg/kg单宁酶(100 000 U/g)、500 mg/kg非淀粉多糖酶(包含10 000 U/g的木聚糖酶、250 U/g的纤维素酶、1 000 U/g的β-葡聚糖酶、1 000 U/g的酸性甘露聚糖酶和500 U/g的果胶酶)以及单宁酶和非淀粉多糖酶组合的外源酶制剂,测定其对含QLS的猪饲粮养分消化率的影响。结果表明:1)试验1、试验2中饲粮总能、粗蛋白质和干物质的全肠道表观消化率(ATTP)均随QLS添加水平的提高而显著降低(P0.05)。2) 0、10%和20%QLS饲粮的消化能分别为(14.41±0.26) MJ/kg DM、(13.64±0.59) MJ/kg DM和(12.73±0.45) MJ/kg DM,以套算法计算得到QLS消化能约为6.36 MJ/kg DM。3)与对照组相比,各外源酶制剂添加组总磷的ATTP显著提高(P0.05),总能和粗纤维的ATTP有提高趋势(0.05≤P0.10),干物质、粗蛋白质和钙的ATTP无显著差异(P0.05)。综上所述,饲粮添加2%~10%QLS对生长猪饲粮养分的体外消化率有降低作用,添加单宁酶和非淀粉多糖酶对QLS饲粮的养分消化率无显著改善作用。  相似文献   

15.
<正>饲料用木聚糖酶的分析测定是长期以来困扰木聚糖酶生产和应用的一个主要难题,特别是固态发酵生产的木聚糖酶,发酵成品中往往含有其它非淀粉多糖酶(纤维素酶、葡聚糖酶、果胶酶和甘露聚糖酶等)[1-3]。文献报道的关于影响酶活测定的因素很多,测定的重复  相似文献   

16.
试验旨在通过透析袋体外酶解的方法,研究甘露聚糖酶和纤维素酶对玉米-小麦-豆粕型日粮还原糖生成量、干物质和粗蛋白质体外酶解效果的影响。试验采用单因子试验设计,甘露聚糖酶的添加浓度分别为5、15、25、35、45 U/g,纤维素酶的添加浓度分别为1、3、5、7、9 U/g,每个添加水平分别设6个重复。结果表明:甘露聚糖酶和纤维素酶的添加浓度分别由5 U/g提高至45 U/g和由1 U/g提高至9 U/g时,显著提高了日粮的还原糖生成量(线性和二次,P0.05)。以还原糖生成量为评价指标,甘露聚糖酶和纤维素酶添加的最适添加浓度分别为20.7 U/g和6.3 U/g。  相似文献   

17.
根据是否在动物体内大量分泌将饲用复合酶制剂分为内源酶和外源酶。内源酶包括蛋白酶、淀粉酶、糖化酶和脂肪酶等,外源酶包括植酸酶和NSP酶,其中NSP酶包括半纤维素酶、纤维素酶(反刍动物除外)、果胶酶等,半纤维素酶又包括木聚糖酶、β-葡聚糖酶、甘露聚糖酶等。  相似文献   

18.
本试验旨在研究激光共聚焦技术与体外酶解技术相结合评定饲用酶制剂在酶解原料上的效果,试验采用复合酶制剂(木聚糖酶5万U/g、纤维素酶1 000 U/g、甘露聚糖酶5万U/g、β-葡聚糖酶5万U/g)分别对原料麸皮、豆粕、玉米、菜粕、小麦进行体外酶解,对照组不进行酶解处理,通过激光共聚焦拍照观察原料结构变化。结果表明:复合酶处理过的原料细胞壁均发生断裂,包裹在其中的蛋白质部分被释放出来;复合酶处理组蓝色荧光强度较未处理组极显著降低。综上可知,采用激光共聚焦技术和体外酶解相结合,通过细胞结构的变化可更加直观、有效、科学地评定酶制剂的酶解效果。  相似文献   

19.
《养猪》2021,(2)
非淀粉多糖酶包括木聚糖酶、甘露聚糖酶、纤维素酶、葡聚糖酶等,是一类重要的功能性饲料添加剂,能够有效降解饲料中具有抗营养作用的非淀粉多糖,从而提高饲料利用率,改善猪的生产性能和肠道健康。文章从繁殖母猪、断奶仔猪、肥育猪3个方面综述了饲粮中添加非淀粉多糖酶的作用,为生产实践提供理论基础。  相似文献   

20.
本文旨在研究小麦-豆粕型饲粮中添加不同组合的非淀粉多糖酶制剂对1~21日龄肉仔鸡生产性能、养分表观利用率及小肠黏膜形态结构的影响.选用1日龄AA肉鸡360羽,随机分为6组,每组4个重复,每个重复15只鸡.对照组饲喂基础饲粮、低能对照组饲喂低能饲粮,4个酶制剂添加组饲喂低能饲粮+0.01%酶制剂(酶制剂1组:木聚糖酶,酶制剂2组:木聚糖酶+β-葡聚糖酶,酶制剂3组:木聚糖酶+β-葡聚糖酶+β-甘露聚糖酶,酶制剂4组:木聚糖酶+β-葡聚糖酶+β-甘露聚糖酶+纤维素酶),饲养试验时间21 d.结果显示:1)酶制剂2组、酶制剂3组和酶制剂4组3种酶制剂添加组肉仔鸡的日增重和饲料表观利用率比低能对照组显著提高(P<0.05),其中酶制剂3组和酶制剂4组肉仔鸡的日增重和饲料表观利用率与正常对照组差异不显著(P>0.05).2)酶制剂3组、酶制剂4组肉仔鸡的蛋白质和能量表观利用率显著高于低能对照组(P<0.05),与正常对照组无显著差异(P>0.05).3)添加酶制剂后能使21日龄肉仔鸡小肠黏膜厚度和绒毛长度增加,隐窝深度降低,其中酶制剂4组对空肠黏膜形态结构有较好改善作用,酶制剂3组对回肠黏膜形态结构效果最好(P<0.05),各酶制剂组对十二指肠黏膜形态结构无显著影响(P>0.05).这表明酶制剂3组和酶制剂4组能提高能量表观利用率,改善低能饲粮下肉仔鸡的小肠黏膜形态结构,使肉仔鸡的生产性能提高到正常饲养水平.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号