首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
India faced an epizootic of equine influenza in 2008-2009. The isolated viruses were typed as H3N8 and grouped with the clade 2 viruses of Florida sublineage on the basis of haemagglutinin (HA) gene sequence analysis. This report describes the genetic analysis and selection pressure of matrix (M) and non-structural 1 (NS1) genes of the Indian isolates. All isolates shared 98.41% and 99.54% homology with other clade 2 viruses of Asian origin for M1 and M2 amino acid (aa) sequences, respectively. There were 3 and 4 unique aa residue changes respectively in M1 and M2 proteins in all Asian isolates. Phylogenetic analysis revealed clustering of Indian and Chinese isolates in a separate group designated here as Asian clade for M gene. Indian and Chinese isolates shared homology ranging from 98.17% to 99.08% at aa level. The M and NS1 genes were under negative selection pressure with estimated magnitude of pressure (ω) 0.054, 0.581 and 0.30 for M1, M2 and NS1, respectively.  相似文献   

2.
African horse sickness virus structure   总被引:4,自引:0,他引:4  
African horse sickness virus (AHSV), of which there are nine serotypes (AHSV-1, -2, etc.), is a member of Orbivirus genus within the Reoviridae family. Both in morphology and molecular constituents AHSV particles are comparable to those of bluetongue virus (BTV), the prototype virus of the genus. The two viruses have seven structural proteins (VP1–7) organized in two layered capsid. The outer capsid is composed of VP2 and VP5. The inner capsid, or core, is composed of two major proteins, VP3 and VP7, and three minor proteins, VP1, VP4 and VP6. Within the core is the virus genome. This genome consists of 10 double-stranded (ds)RNA segments of different sizes, three large, designated L1–L3, three medium, M4–M6, and four small, S7–S10. In addition to the seven stuctural proteins that are coded by seven of the RNA species, four non-structural proteins, NS1, NS2, NS3 and NS3A, are coded by three RNA segments, M5, S8 and S10. The two smallest proteins (NS3 and NS3A) are synthesized by the S10 RNA segment, probably from different in-frame translation initiation codons. Nucleotide sequences of eight RNA segments (L2, L3, M4, M5, M6, S7, S8 and S10) and the predicted amino acid sequences of the encoded gene products are also available, mainly representing one serotype, AHSV-4. In this review the properties of the AHSV genes and gene products are discussed. The sequence and hybridization analyses of the different AHSV dsRNA segments indicate that the segments that code for the core proteins, as well as those that code for NS1 and NS2 proteins, are highly conserved between the different virus serotypes. However, the RNA encoding NS3 and NS3A, and the two segments encoding the outer capsid proteins, are more variable between the AHSV serotypes. A close phylogenetic relationship between AHSV, BTV and epizootic haemorrhagic disease virus (EHDV), three Culicoides-transmitted orbiviruses, has been revealed when the equivalent sequences of genes and gene products are compared. Recently, the four major AHSV capsid proteins have been expressed using recombinant baculoviruses. Biochemically and antigenically these proteins are similar to the authentic proteins. Since the AHSV VP7 protein is highly conserved among the different serotypes, it has been utilized as a diagnostic reagent. The expressed VP7 protein has also been purified to homogeneity and crystallized for three-dimensional X-ray analysis. The expressed outer capsid proteins, VP2 and VP5, have been purified and used to raise antisera in rabbits. The VP2 antisera neutralize virus infections in vitro indicating the importance of this protein for vaccine development.  相似文献   

3.
To compare the molecular and growth properties of two newly isolated canine distemper virus strains in the Asia 1 and 2 groups with clinico-pathological findings in dogs, nucleotide and predicted amino acid sequence comparisons of genes H and P were performed together with comparative growth profiling. The predicted amino acid sequences of the H gene contained 12 cysteine residues that were conserved among the examined Asia 1 and Asia 2 viruses. The hydrophobic region in the H gene of the Asia 2 isolates was one amino acid longer than that of the Asia 1 group. The H gene of the Asia 1 group had nine putative asparagine (N)-linked glycosylation sites, while there were eight sites in the Asia 2 group. The titers of the cell-associated viruses for the Asia 1 strains were higher than those of the released viruses and were opposite to those of the Asia 2 strains in a previous study. The molecular and growth properties of the Asia 1 and Asia 2 groups seem to vary, although no significant differences were observed in the clinical signs and pathological findings between the two groups.  相似文献   

4.
A total of 18 foot-and-mouth disease virus (FMDV) serotype Asia1 field isolates belonging to two different lineages (including the divergent group) as delineated earlier in VP1-based phylogeny were sequenced in the non-structural 3A and 3C protein-coding regions. The phylogenetic trees representing the regions coding for the non-structural proteins were very similar to that of the structural VP1 protein-coding region. Phylogenetic comparison at 3C region revealed clustering of Asia1 viruses with the isolates of serotypes O, A and C in the previously identified clade. Comparison of amino acid sequences identified lineage-specific signature residues in both the non-structural proteins. Overall analysis of the amino acid substitutions revealed that the 3A coding region was more prone to amino acid alterations than 3C region.  相似文献   

5.
SUMMARY The polymerase chain reaction was used to detect the presence of blue-tongue virus (BTV) in a number of clinical and insect samples collected in the Northern Territory of Australia. Sequence analyses of the amplified BTV genes differentiated endemic Australian and exotic viruses. Two potential exotic BTV were detected as a result of PCR analyses of blood from sentinel animals and of the insect vector, Culicoides wadai. The detection of BTV in C wadai was the first direct demonstration of the presence of BTV in this potential vector. This new technology can significantly reduce the time taken for a diagnosis from a clinical sample and increase the amount of useful information obtained on a BTV isolate by using rapid sequencing techniques. Sequence data were used to differentiate between BTV20 isolated in 1975 and two isolates of the same serotype, isolated in 1992, and indicated that the latter were probably a recent incursion into Australia from Indonesia due to their greater VP3 sequence homology to the BTV9 (Java) than to Australian BTV isolates.  相似文献   

6.
Bluetongue (BT) virus serotype 2 (BTV 2) was first confirmed in Tunisia in February 2000 and has since spread northward and westward, infecting several other countries and islands, including Corsica, where clinical disease was reported in October 2000. BT was again reported on the Island in July 2001, some six months after a vaccination campaign against BTV 2. The molecular relationship between isolates of the BTV 2 Corsican wild-type viruses from 2000 and 2001, and the attenuated BTV 2 vaccine were determined by comparing corresponding sequences of genome segments 2, 7 and 10 with each other and with already published sequences available in the genome database. Complete genetic stability was observed between the isolates of the Corsican BTV 2. There was some divergence between the nucleotide sequences of segment 10 obtained from the wild-type and vaccine virus strains. Based on these differences, primers were selected that could be used in RT-PCR to differentiate between the wild-type and the vaccine viruses.  相似文献   

7.
BackgroundArctic-like (AL) lineages of rabies viruses (RABVs) remains endemic in some Arctic and Asia countries. However, their evolutionary dynamics are largely unappreciated.ObjectivesWe attempted to estimate the evolutionary history, geographic origin and spread of the Arctic-related RABVs.MethodsFull length or partial sequences of the N and G genes were used to infer the evolutionary aspects of AL RABVs by Bayesian evolutionary analysis.ResultsThe most recent common ancestor (tMRCA) of the current Arctic and AL RABVs emerged in the 1830s and evolved independently after diversification. Population demographic analysis indicated that the viruses experienced gradual growth followed by a sudden decrease in its population size from the mid-1980s to approximately 2000. Genetic flow patterns among the regions reveal a high geographic correlation in AL RABVs transmission. Discrete phylogeography suggests that the geographic origin of the AL RABVs was in east Russia in approximately the 1830s. The ancestral AL RABV then diversified and immigrated to the countries in Northeast Asia, while the viruses in South Asia were dispersed to the neighboring regions from India. The N and G genes of RABVs in both clades sustained high levels of purifying selection, and the positive selection sites were mainly found on the C-terminus of the G gene.ConclusionsThe current AL RABVs circulating in South and North Asia evolved and dispersed independently.  相似文献   

8.
The genome sequences of eight pigeon circoviruses (PiCV) were determined and compared with four previously published sequences. The viruses compared were from the USA, five European countries, China and Australia and included PiCVs from racing, feral, ornamental and meat pigeons and a Senegal dove (Streptopelia senegalensis). The 12 PiCV genomes, ranging from 2032 to 2040 nucleotides in length, displayed similar organizations. Pairwise comparisons showed that the genome nucleotide sequence identities ranged from 85.1% to 97.8% and that the amino acid identities of the putative replication associated (Rep) and putative capsid (Cap) proteins displayed ranges of 91.5-99.1% and 73.0-99.3%, respectively. Comparative analyses identified conserved nucleotide sequences within the Rep gene and 3' intergenic regions, which would be suitable for diagnostic PCR primers, and variable amino acid sequences within the capsid proteins, which should be considered when selecting virus isolates for vaccine development.  相似文献   

9.
番鸭呼肠孤病毒非结构基因的克隆和序列分析   总被引:8,自引:1,他引:8  
参考GenBank禽呼肠孤病毒(Avian Reovirus,ARV)和番鸭呼肠孤病毒(Muscovy Duck Reovirus,MDRV)非结构基因(NS)序列设计合成一对引物,对番鸭呼肠孤病毒S14和C4株NS基因进行RT-PCR扩增,克隆到pMD18-T载体中,并对克隆产物进行酶切鉴定和测序;番鸭呼肠孤病毒NS基因由1 291 bp核苷酸组成,与禽呼肠孤病毒NS基因相比,在非编码区第1155位少一个碱基,本文第一次证实1291bp是番鸭呼肠孤病毒NS基因特有的长度;番鸭呼肠孤病毒S14和C4株NS基因的5'末端和3'末端分别为5‘GCTTTT和TCATC-3',是禽类呼肠孤病毒基因末端特有的碱基序列,S14和C4株NS基因的的有效阅读框(24~1127bp)编码367个氨基酸组成的蛋白,分子量约为40kDa;番鸭呼肠孤病毒S14和C4株NS蛋白等电点分别是7.3和7.0,GC含量分别为54.26%和53.71%,番鸭呼肠孤病毒S14和C4株NS基因间核苷酸同源性为99.3%,仅有4个氨基酸差异,S14和C4与法国番鸭呼肠孤病毒89026株NS基因核苷酸同源性分别为87.8%和87.9%,与鸡关节炎病毒S1133 NS基因同源性分别为79.0%和79.3%;进化树分析表明本研究中的两株番鸭呼肠孤病毒非结构基因(NS)与番鸭呼肠孤病毒的亲缘关系比禽呼肠孤病毒近的多,建议番鸭呼肠孤病毒应归属为正呼肠孤病毒属第二个亚群中不同于禽和内尔森贝海湾呼肠病毒独立基因群.  相似文献   

10.
对自1994—2009年从我国5省区免疫鸡群中分离到的37株传染性支气管炎病毒(IBV)的S蛋白基因序列进行分析,发现S1基因序列存在广泛的氨基酸替换、缺失和插入现象,大部分IBV分离株S1基因的推导氨基酸序列变异主要集中在60~63、73~74、97、128、282~299位等。S2基因较为保守,主要在裂解位点后的2~47、122~152位发生氨基酸的替换,可见IBV S基因的不断变异可能是造成本试验所调查的5省区免疫鸡群IB频发的重要原因。遗传进化分析发现本试验所调查地区近十多年来肾型毒株仍是主要流行株,没有或少有4/91型毒株流行。所调研地区鸡的腺胃炎持续广泛地发生,但是从临床腺胃病料中很少分离到IBV,可见IBV不太可能是引起腺胃炎的主要病原。  相似文献   

11.
Crimean–Congo hemorrhagic fever (CCHF) is a severe hemorrhagic fever in humans with a case fatality rate of up to 50%. A causative agent of CCHF is CCHF virus, which is a tick-borne virus in the family Bunyaviridae, genus Nairovirus. The virus is transmitted to humans through infected tick bites, squashed ticks or from direct contact with viremic animals or humans. Outbreaks of CCHF have been documented in Africa, the Middle East, Eastern Europe and Western Asia where the vector and/or reservoir ticks of Hyalomma spp. are distributed. Recent advances in molecular and biochemical analyses of CCHF virus revealed that the virus encodes larger proteins compared to other genus of Bunyavirus and the processing of viral proteins are complicated. Recent studies also showed that the CCHF viruses are relatively divergent in its genome sequence and the viruses are grouped in seven different clades. In general, these phylogenetic analyses based on sequences of S-RNA and L-RNA segment of CCHF viruses indicate that the seven clades correlate with their geographical location. The phylogenetic topology based on M-RNA segment sequences of CCHF viruses is different from those based on S-RNA and L-RNA segments. These analyses indicate that M-RNA segment reassortment events occur more frequently than those in S- and L-RNA segments.  相似文献   

12.
13.
In order to determine the mutations responsible for virulence, three Croatian field infectious bursal disease viruses (IBDV), designated Cro-Ig/02, Cro-Po/00, and Cro-Pa/98 were characterized. Coding regions of both genomic segments were sequenced, and the nucleotide and deduced amino acid sequences were compared with previously reported full-length sequenced IBDV strains. Phylogenetic analysis, based on the nucleotide and deduced amino acid sequences of polyprotein and VP1, was performed. Eight characteristic amino acid residues, that were common to very virulent (vv) IBDV, were detected on polyprotein: 222A, 256I, 294I, 451L, 685N, 715S, 751D, and 1005A. All eight were found in Cro-Ig/02 and Cro-Po/00. C-Pa/98 had all the characteristics of an attenuated strain, except for glutamine on residue 253, which is common for vv, classical virulent, and variant strains. Between less virulent and vvIBDV, three substitutions were found on VP5: 49 G --> R, 79 --> F, and 137 R --> W. In VP1, there were nine characteristic amino acid residues common to vvwIBDV: 146D, 147N, 242E, 390M, 393D, 511S, 562P, 687P, and 695R. All nine residues were found in A-Ig/02, and eight were found in B-Po/00, which had isoleucine on residue 390. Based on our analyses, isolates Cro-Ig/02 and Cro-Po/00 were classified with vv IBDV strains. C-Pa/98 shared all characteristic amino acid residues with attenuated and classical virulence strains, so it was classified with those.  相似文献   

14.
Following isolation of a virus (CSIRO19) from insects in Australia and its identification as bluetongue virus serotype 20 (BTV20), a nationwide survey of antibodies in cattle and sheep sera was undertaken. Initial studies using the serum neutralization (SN) test showed that the distribution of BTV20 antibodies in cattle was confined to the northern part of Australia. Group-reactive antibody tests (agar gel diffusion precipitin, AGDP, and complement-fixation, CF) showed group-reactive cattle sera south of the BTV20 zone (northern Australia), and southwards from Queensland to New South Wales. Very few group-reactive sheep sera (45 out of 16213) were found and these were of doubtful epidemiological significance. Some of these BTV group-reactive, BTV20-negative, sera were tested in SN tests against BTV1 to 17 and Ibaraki (IBA) virus. The results indicated that BTV1, or a closely related orbivirus, was active in cattle in Queensland, northern Western Australia, and New South Wales, and that antibody to BTV15 was present in some of the cattle sera in northern Western Australia and the Northern Territory. Antibody to IBA virus was present in some cattle sera in Queensland, northern Western Australia and New South Wales. SN antibody titres ?60 were also found to a number of other BTV serotypes in cattle sera in northern Western Australia and Queensland (principally, BTV2 and BTV7). Low level reactions were commonly observed against these and a number of other BTV serotypes, often in the same serum samples. Further, 22% of the group-reactive cattle sera did not react with any of the viruses in the SN tests. Such results were difficult to interpret in terms of known Australian BTV or BTV-related isolates.  相似文献   

15.
Serological surveys revealed that some cattle in northern Australia possessed bluetongue virus (BTV) group-reactive (agar gel diffusion precipitin, AGDP, and complement-fixing, CF) antibodies, but not serum neutralizing (SN) antibodies, to BTV20, a new type previously found in Australia. Attempts were made during 1979 to isolate viruses causing these reactions. There was one isolate of a virus (CSIRO 154) and eight isolates of another virus (CSIRO 156) made from the blood of healthy cattle in the Northern Territory. These viruses could not be distinguished from BTV20 by AGDP, CF or fluorescent-abtibody tests and hence were designated members of the bluetongue serogroup. Serotyping was carried out using the plaque-inhibition and plaque-reduction SN tests. CSIRO 156 virus could not be distinguished from BTV1 by any of the SN tests and it was concluded that it was an Australian isolate of the BTV1 serotype. CSIRO 154 virus was found to be related to, but not identical with, BTV6. It is probably not one of the known 20 BTV serotypes and may represent a new BTV serotype. None of the three Australian BTV isolates is known to cause clinical disease in sheep or cattle under natural conditions, and biochemical comparisons with the African BTV serotypes may show differences not revealed by these serological studies.  相似文献   

16.
上海地区鸡传染性支气管炎病毒S2基因的检测及分析   总被引:1,自引:1,他引:0  
参考GenBank发表的传染性支气管炎病毒(infectious bronchitis virus,IBV)S基因序列,设计合成了1对引物,模拟PCR表明,该引物能扩增现已发表的所有IBV的S2基因部分核酸序列,扩增片段493bp。建立的RT—PCR检洲体系检测灵敏度达10~50ELD50,检出限量为0.1ng。采集上海地区12个鸡场疑似IBV禽样品34份进行检洲,阳性为32份,序列分析表明均为肾变型IBV S2基因片段,S2基因同源性较高(≥99%),与其他地区肾变型IBV也有较高同源性,而与腺胃型和呼吸型相比较,序列差异较大。进化分析表明,尽管IBV S2片段变异率明显低于S1基因,但二者表现相同的进化趋势,S2基因亦可反映出IBV的分子变异及毒株间的亲缘关系。  相似文献   

17.
To examine the effects of the NS1 and NEP genes of avian influenza viruses (AIVs) on pathogenicity in mice, we generated recombinant PR8 viruses containing 3 different NS genes of AIVs. In contrast to the reverse genetics-generated PR8 (rPR8) strain and other recombinant viruses, the recombinant virus rPR8-NS(0028), which contained the NS gene of A/chicken/KBNP-0028/2000 (H9N2) (0028), was non-pathogenic to mice. The novel single mutations of 0028 NS1 to corresponding amino acid of PR8 NS1, G139D and S151T increased the pathogenicity of rPR8-NS(0028). The replacement of the PL motifs (EPEV or RSEV) of pathogenic recombinant viruses with that of 0028 (GSEV) did not reduce the pathogenicity of the viruses. However, a recombinant virus with an EPEV-grafted 0028 NS gene was more pathogenic than rPR8-NS(0028) but less than rPR8. The lower pathogenicity of rPR8-NS(0028) might be associated with the lower virus titer and IFN-β level in the lungs of infected mice, and be attributed to G139, S151 and GSEV-PL motif of NS1 gene of 0028. In conclusion we defined new amino acid residues of NS1 related to mice pathogenicity and the presence of pathogenic NS genes among low pathogenic AIVs may encourage continuous monitoring of their mammalian pathogenicity.  相似文献   

18.
Immunological protection of mammalian hosts against tick infestation has been proposed as the most sustainable alternative tick control method to the current use of acaricides which has several limitations. The success of this method is dependent on the identification of key molecules for use as tick vaccine antigens. Proteolytic enzymes are involved in a wide range of cellular processes in eukaryotes such as development regulation and nutrition, thus they can be considered as good target antigens for a tick vaccine. In the present study we used primers designed based on the consensus amino acid motifs flanking the conserved active sites C25 and N175 present in all papain-like cysteine proteinases to amplify by polymerase chain reaction, sequence and characterize two Haemaphysalis longicornis tick cysteine proteinase genes. Based on the nucleotide and deduced amino acid sequences, both genes were identified as members of the cysteine proteinase gene family by presence in their sequences of consensus motifs flanking the conserved active sites C25, H150 and N175 that are present in all papain-like cysteine proteinases. Both genes are about 1.2 kb in size and show high sequence homology predominantly to invertebrate cathepsin L-like cysteine proteinases.  相似文献   

19.
为了解中国目前禽坦布苏病毒在家禽中的流行状况及病毒分子演化特征,对2010~2011年采集自中国沿海及周边的9个省的439份疑似家禽坦布苏病毒感染的临床样品进行了鉴定,并进行了分离毒株NS5基因的分子遗传进化分析。结果表明,2010年采集的187份家禽病料中检测出42份阳性样品,阳性率为21.6%,而2011年采集的252份样品中检测出37份阳性样品,阳性率为13.9%。对部分毒株的NS5基因测序表明,本研究分离的禽坦布苏病毒与已发布的同时期分离的禽坦布苏病毒NS5基因同源性在98%以上,与2010年前分离的鸡源及蚊媒坦布苏病毒的同源性介于83.8%~85.8%之间;所有2010年后分离的禽坦布苏病毒毒株在系统进化上共同构成了一个进化分支。结果表明,2011年禽坦布苏病毒仍在中国沿海及周边的9个省的家禽中流行,病毒NS5基因的测序分析表明,到目前为止在家禽中流行的禽坦布苏病毒未出现明显的分子变异。  相似文献   

20.
Genome segment 10 of bluetongue virus (BTV) serotype 11 UC8 strain was cloned and subsequently hybridized to viral double-stranded RNA extracted from 90 field isolates of BTV serotypes 10, 11, 13, and 17; the prototype strains of BTV 2, 10, 11, 13, and 17; the prototype strain epizootic hemorrhagic disease virus (EHDV) serotype 1; and 4 field isolates of EHDV serotype 2. The 90 field isolates were obtained from different counties in California, Louisiana, and Idaho during the years 1979, 1980, and 1981. The cloned genetic probe hybridized with all the BTV samples tested, showing different degrees of cross-hybridization at the stringency conditions used in this study. This indicated that BTV genome segment 10 has conserved nucleotide sequences among the BTV serotypes 2, 10, 11, 13, and 17. No cross-hybridization signals were detected between the cloned genome segment 10 of BTV 11 UC8 strain and the prototype strain of EHDV serotype 1 and the field isolates of serotype 2. This probe recognized a wide variety of BTV isolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号