首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
建立了一种可同时检测羊奶中五种氟喹诺酮类药物(环丙沙星、达氟沙星、恩诺沙星、沙拉沙星、二氟沙星)残留的高效液相色谱—荧光检测法。羊奶样品经乙腈提取,正己烷去脂肪,C18柱净化。以0.05 mol/L磷酸三乙胺溶液和乙腈溶液为流动相,流速为0.8 m L/min,激发波长280 nm,发射波长450 nm。结果表明环丙沙星、恩诺沙星、沙拉沙星、二氟沙星在10~200 ng/m L,达氟沙星在2~40 ng/m L呈良好的线性关系,R2均大于0.999。环丙沙星、恩诺沙星、沙拉沙星、二氟沙星的最低定量限为30μg/kg,达氟沙星的最低定量限为6μg/kg。环丙沙星、恩诺沙星、沙拉沙星、二氟沙星在30~200μg/kg的浓度添加水平上,达氟沙星在6~40μg/kg的浓度添加水平上其回收率均在70~100%,批内、批间的相对标准偏差小于20%。该方法简单快速、灵敏度高、重复性好,适用于羊奶中五种氟喹诺酮类药物残留检测。  相似文献   

2.
牛奶中氟喹诺酮类药物残留量检测方法研究   总被引:4,自引:2,他引:2  
仲锋 《中国兽药杂志》2008,42(10):14-16
建立了牛奶中5种氟喹诺酮类药物(达氟沙星、恩诺沙星、环丙沙星、沙拉沙星和二氟沙星)残留检测的高效液相色谱-荧光检测法.结果表明,环丙沙星、恩诺沙星、沙拉沙星、二氟沙星在5~300 ng/mL,达氟沙星在1~60 ng/mL浓度范围内,呈良好的线性关系,r均大于0.999 9.方法最低检测限环丙沙星、恩诺沙星、沙拉沙星、二氟沙星为5 ng/mL,最低定量限为10 ng/mL.达氟沙星最低检测限为1 ng/mL,最低定量限为2 ng/mL.环丙沙星、恩诺沙星、沙拉沙星、二氟沙星在10、50、100 ng/mL三种浓度添加水平上,平均回收率为70%~94%,达氟沙星在2、10、20 ng/mL三种浓度添加水平上,平均回收率为73%~88%.批内、批间RSD均小于11%.  相似文献   

3.
建立了鸡蛋中环丙沙星、达氟沙星、恩诺沙星和沙拉沙星4种氟喹诺酮类药物残留测定的超高效液相色谱方法。样品经磷酸盐缓冲液提取后,用正己烷脱脂,C18固相萃取柱净化,反相高效液相色谱分离,荧光检测器测定。本方法的检测限为环丙沙星、恩诺沙星和沙拉沙星5 μg/kg,达氟沙星1 μg/kg。环丙沙星、恩诺沙星和沙拉沙星在2~200 ng/mL、达氟沙星在0.4~40 ng/mL范围内呈线性相关,相关系数r大于0.9999。在空白鸡蛋中添加环丙沙星、恩诺沙星和沙拉沙星5~50 μg/kg、达氟沙星1~10 μg/kg,4种氟喹诺酮类药物的平均回收率为82.2~101.3%,批内变异系数0.8~5.9%之间(n=6),批间变异系数在1.0~6.6%之间(n=4)。结果表明,该法灵敏、准确、特异性强,适用于鸡蛋中氟喹诺酮类药物残留的测定。  相似文献   

4.
超高效液相法检测鸡蛋中四种氟喹诺酮类药物残留,样品经1%甲酸乙腈提取后,荧光检测器检测分析。结果表明,四种氟喹诺酮类药物的峰面积与浓度呈现良好的线性关系,相关系数R20.9999。在环丙沙星、恩诺沙星、沙拉沙星添加浓度为10、100、200μg/kg和达氟沙星添加浓度为2、20、40μg/kg的情况下,四种氟喹诺酮类药物的回收率为73.4%~99.1%,各药物批内、批间相对标准偏差均小于10%,适用于鸡蛋中氟喹诺酮类药物残留的检测。  相似文献   

5.
为了建立一种同时测定牛奶中4种氟喹诺酮类药物(恩诺沙星、环丙沙星、沙拉沙星、二氟沙星)多残留高效液相色谱检测方法,将牛奶中的残留药物用磷酸-甲醇溶液重复提取2次,正己烷除去脂肪净化后浓缩,流动相溶解后用高效液相色谱-荧光检测器测定。结果表明,4种氟喹诺酮类药物在0.01~1.00μg/mL浓度范围内具有良好的线性关系(R=0.999 9),在0.01,0.05,0.10,0.50μg/mL和1.00μg/mL 5个浓度添加水平上,平均回收率为77%~93%,样品的批内和批间变异系数均值分别为5.29%和7.83%,定量限均为10 ng/mL。环丙沙星、恩诺沙星、沙拉沙星检测限均为5 ng/mL,二氟沙星检测限为8 ng/mL。本研究建立的检测方法简单、快速、灵敏度和回收率高,适用于牛奶中4种氟喹诺酮类药物残留检测。  相似文献   

6.
建立了一种使用新型反相固相萃取吸附剂(PRiME HLB)的前处理净化流程,采用高效液相色谱-荧光检测器同时测定鸡蛋中环丙沙星、达氟沙星、恩诺沙星和沙拉沙星残留量的方法。试样经乙腈∶0.2%甲酸水溶液(80∶20)提取,PRiME HLB固相萃取柱净化后进行测定,外标法定量。实验结果表明:(1)在鸡蛋中环丙沙星、恩诺沙星和沙拉沙星的检测限为0.75μg/kg,达氟沙星的检测限为0.15μg/kg;在0.005~0.5μg/mL质量浓度范围(达氟沙星在0.001~0.2μg/mL浓度范围)内线性回归关系良好(r0.99999)。(2)环丙沙星、恩诺沙星和沙拉沙星的添加量为0.005、0.05、0.5μg/mL(达氟沙星0.001、0.02、0.2μg/mL)时,方法的添加回收率在74.24%~98.78%,RSD5.15%。本方法适用于鸡蛋中4种氟喹诺酮类药物残留量的测定。  相似文献   

7.
《畜牧与兽医》2017,(11):47-51
建立了一种测定鸡肉或者鸡蛋中环丙沙星、达氟沙星、恩诺沙星、沙拉沙星4种氟喹诺酮类药物残留量的高效液相色谱法。鸡肉或鸡蛋样品两次用磷酸盐缓冲溶液(p H=7.0)提取,正己烷去杂质,固相萃取用C18小柱净化,流动相调整为0.05 mol/L磷酸溶液(p H=2.4):乙腈比例为70:30,收集洗脱液,用高效液相色谱法测定。添加低、中、高浓度的标准品时,回收率为88.68%~100.30%,相对偏差在1.55%~2.31%(n=5);标准曲线显示环丙沙星、恩诺沙星和沙拉沙星在0.001~0.200 mg/kg,达氟沙星在0.001~0.040 mg/kg范围内线性关系良好,相关系数在0.9999以上。采用本方法操作简便,灵敏度高,专属性强,基质干扰小,结果准确可靠,可以满足鸡肉或者鸡蛋中的环丙沙星、达氟沙星、恩诺沙星、沙拉沙星四种氟喹诺酮类药物残留检测的需要。  相似文献   

8.
建立高效液相色谱—荧光检测法同时测定饲料中4种氟喹诺酮类药物的方法。样品经1%甲酸甲醇提取后,C18柱分离,荧光检测器检测,激发波长280 nm,发射波长450 nm,流动相为0.05 mol/L磷酸(用三乙胺调节pH2.4)-乙腈=85:15(v/v)。3种氟喹诺酮类药物(环丙沙星、恩诺沙星和沙拉沙星)在0.05~50μg/mL质量浓度范围内,达氟沙星在0.01~10μg/mL质量浓度范围内与峰面积呈良好的线性关系,相关系数均>0.999 6,方法精密度为1.81%~2.11%(迁移时间)和0.5%~0.92%(峰面积),在空白样品中进行3个质量浓度水平的添加,平均回收率在82.41%~103.17%,批内变异系数在0.33%~2.79%。结果表明:该法操作简便,快速准确,适合饲料中氟喹诺酮类药物的检测。  相似文献   

9.
胶体金免疫层析法快速检测牛奶中氟喹诺酮类药物残留   总被引:1,自引:0,他引:1  
利用胶体金标记的抗氟喹诺酮类单克隆抗体制备了氟喹诺酮类胶体金免疫检测试纸条.该试纸条对牛奶中恩诺沙星、沙拉沙星、双氟沙星、氧氟沙星、诺氟沙星、环丙沙星、培氟沙星、氟甲喹、达氟沙星检测,检测限为20μg/L;对依诺沙星、恶喹酸检测,检测限为40μg/L.检测时间为5min.与三聚氰胺、磺胺类药物、氯霉素、大环内酯类药物、氨基糖苷类药物、四环素类药物在500μg/L浓度时,不发生交叉反应.试纸条的检测结果与仪器检测结果一致,重复性较好,在4℃条件下可以保存12个月.本研究制备的氟喹诺酮类药物残留检测试纸条可用于牛奶中11种氟喹诺酮类药物残留的检测.  相似文献   

10.
对《动物性食品中氟喹诺酮类药物残留检测高效液相色谱法》进行改进,经试验验证,洗脱液改用含30%乙腈的流动相时,能提高方法的回收率。添加10μg/kg、100μg/kg、200μg/kg浓度水平时,测得的回收率为77.6%~95.2%,精密度10%,该方法检测环丙沙星的线性范围是5~200μg/kg,检出限是0.5μg/kg、定量限是11.7μg/kg;达氟沙星的线性范围是1~40μg/kg,检出限是0.11μg/kg、定量限是3.4μg/kg;恩诺沙星的线性范围是5~200μg/kg,检出限是0.5μg/kg、定量限是11.6μg/kg;沙拉沙星的线性范围是5~200μg/kg,检出限是0.5μg/kg、定量限是16.7μg/kg。说明改进后的方法能够满足鸡肉中氟喹诺酮类药物残留的检测。  相似文献   

11.
用针对抗氟喹诺酮类(fluoroquinolones,FQs)药物的广谱性单克隆抗体建立了可以同时检测11种FQs药物的胶体金免疫层析方法。该试纸条用20 nm的胶体金标记单抗,将诺氟沙星-卵清蛋白喷涂在检测线上,羊抗小鼠二抗喷涂在质控线上。该胶体金试纸对猪肉和虾中环丙沙星、恩诺沙星和氧氟沙星的检测限都是30 ng/g,对诺氟沙星、培氟沙星、依诺沙星、麻保沙星、洛美沙星、达氟沙星、沙拉沙星和二氟沙星8种药物在以上两种样品中添加浓度为100 ng/g时都可被检出,整个检测过程包括样品前处理的时间可在20 min内完成。试验结果表明符合对这11种FQs药物在鸡肉和虾中残留现场大量筛查的要求。  相似文献   

12.
The plasma pharmacokinetics of danofloxacin and enrofloxacin in broiler chickens was investigated following single intravenous (i.v.) or oral administration (p.o.) and the steady-state plasma and tissue concentrations of both drugs were investigated after continuous administration via the drinking water. The following dosages approved for the treatment of chickens were used: danofloxacin 5 mg/kg and enrofloxacin 10 mg/kg of body weight. Concentrations of danofloxacin and enrofloxacin including its metabolite ciprofloxacin were determined in plasma and eight tissues by specific and sensitive high performance liquid chromatography methods. Pharmacokinetic parameter values for both application routes calculated by noncompartmental methods were similar for danofloxacin compared to enrofloxacin with respect to elimination half-life (t1/2: approximately 6-7 h), mean residence time (MRT; 6-9 h) and mean absorption time (MAT; 1.44 vs. 1.20 h). However, values were twofold higher for body clearance (ClB; 24 vs. 10 mL/min. kg) and volume of distribution at steady state (VdSS; 10 vs. 4 L/kg). Maximum plasma concentration (Cmax) after oral administration was 0.5 and 1.9 micrograms/mL for danofloxacin and enrofloxacin, respectively, occurring at 1.5 h for both drugs. Bioavailability (F) was high: 99% for danofloxacin and 89% for enrofloxacin. Steady-state plasma concentrations (mean +/- SD) following administration via the drinking water were fourfold higher for enrofloxacin (0.52 +/- 0.16 microgram/mL) compared to danofloxacin (0.12 +/- 0.01 microgram/mL). The steady-state AUC0-24 h values of 12.48 and 2.88 micrograms.h/mL, respectively, derived from these plasma concentrations are comparable with corresponding area under the plasma concentration-time curve (AUC) values after single oral administration. For both drugs, tissue concentrations markedly exceeded plasma concentrations, e.g. in the target lung, tissue concentrations of 0.31 +/- 0.07 microgram/g for danofloxacin and 0.88 +/- 0.24 microgram/g for enrofloxacin were detected. Taking into account the similar in vitro activity of danofloxacin and enrofloxacin against important pathogens in chickens, a higher therapeutic efficacy of water medication for enrofloxacin compared to danofloxacin can be expected when given at the approved dosages.  相似文献   

13.
建立了一个检测动物源性食品中6种氟喹诺酮类药物残留的高效液相色谱方法。对不同基质的样品前处理条件经行了优化:鱼、肉及肝脏样品经过乙腈-0.1 mol/L磷酸二氢钾缓冲液提取,正己烷洗涤去除油脂;蛋及乳制品样品经过乙腈提取,正己烷洗涤去除油脂。目标化合物采用高效液相色谱-荧光检测器检测,外标法定量。添加10、20、50、100μg/kg浓度水平时,回收率在82%~105%之间,相对标准偏差在4%~12%之间,方法的检出限为诺氟沙星、环丙沙星、沙拉沙星及单诺沙星为5.0μg/kg、恩诺沙星、达氟沙星为3.0μg/kg。方法操作简单、实用,基质干扰小,灵敏度高,可以满足动源性食品中氟喹诺酮类药物残留检测的需要。  相似文献   

14.
氟喹诺酮类药物多残留间接竞争ELISA检测方法的建立   总被引:3,自引:0,他引:3  
为建立同时检测多种氟喹诺酮药物的免疫学分析方法,本研究以碳二亚胺(EDC)二步法合成环丙沙星人工抗原,免疫新西兰大白兔制备多克隆抗体,建立氟喹诺酮类药物多残留检测方法.标准曲线在PBS中的线性检测范围为0.2 ng/mL~376 ng/mL,半数抑制浓度(IC50)为8 ng/mL,检测限(LOD)为0.1 ng/mL;抗体对恩诺沙星、诺氟沙星和培氟沙星均能特异性识别,IC50值分别为7.3 ng/mL、10.6 ng/mL、和13.2 ng/mL;标准品稀释液中NaOH和甲醇的最高容忍度分别为10%和30%;牛奶基质中添加5 ng/mL、20 ng/mL和50 ng/mL的标准品,环丙沙星、恩诺沙星、诺氟沙星和培氟沙星的回收率分别为93%~108%、96%~110%、92.5%~104%和93%~102%.  相似文献   

15.
建立了高效液相色谱—串联质谱法(HPLC-MS/MS)检测鸡蛋中恩诺沙星、环丙沙星残留的方法。鸡蛋样品经1%乙酸乙腈提取、正己烷除脂, 用HPLC-MS/MS进行检测。恩诺沙星、环丙沙星在0.5~500 ng/mL浓度时线性关系良好(r≥0.999);恩诺沙星回收率为87.7%~99.1%、环丙沙星的回收率为89.1%~101.4%, 检测限为0.5 μg/kg, 定量限为1.0 μg/kg。应用该方法初步研究了恩诺沙星及其代谢物环丙沙星在鸡蛋中的残留消除规律。结果表明, 给药后鸡蛋中恩诺沙星及其代谢物蓄积迅速, 停药8 d后痕量恩诺沙星代谢缓慢, 25 d后恩诺沙星代谢完全。  相似文献   

16.
猪链球菌Ⅱ型四川分离株对抗菌药的敏感性分析   总被引:6,自引:1,他引:6  
对四川省不同地区链球菌病病死猪体内分离的7株链球菌Ⅱ型进行抗菌药敏感性试验,用链球菌兰氏D群C55914作为对照,比对菌为肺炎链球菌质控菌株ATCC49619.在32种抗菌药中,选择29种药物进行纸片法药敏试验.试验结果表明:7株链球菌耐药谱非常相似,对青霉素、氨苄西林、阿莫西林、奥格门丁、卡那霉素、红霉素、壮观霉素、氯霉素、氟苯尼考、头孢氨苄、头孢拉定、头孢他定、头孢呋辛、头孢曲松、环丙沙星、氧氟沙星、二氟沙星、沙拉沙星、达氟沙星、恩诺沙星、复方新诺明、万古霉素、亚安培南均敏感;对阿米卡星、新霉素、庆大霉素3株敏感,4株中敏;对四环素和多西环素2株中敏,5株耐药;对链霉素1株中敏,6株耐药.用21种药物进行最小抑菌浓度(MIC)测定,结果7株均对青霉素、氨苄西林、卡那霉素、红霉素、头孢他定、头孢呋辛、头孢曲松、头孢噻呋、环丙沙星、达氟沙星、氧氟沙星、二氟沙星、沙拉沙星、恩诺沙星、磺胺六甲氧嘧啶敏感,1株对新霉素和阿米卡星中敏,2株耐药;所有菌株对四环素、土霉素、多西环素、链霉素均耐药.两种方法总体结果一致.  相似文献   

17.
OBJECTIVE: To compare concentrations of danofloxacin, enrofloxacin, and ciprofloxacin in plasma and respiratory tissues of calves treated after challenge with Mannheimia haemolytica. ANIMALS: 75 calves. PROCEDURE: 24 hours after challenge with M. haemolytica, 72 calves with clinical signs of respiratory tract disease were randomly assigned to 1 of 12 equal treatment groups.Three nonchallenged, nontreated calves formed a control group. Challenged calves were treated with danofloxacin (6 and 8 mg/kg, SC) and enrofloxacin (8 mg/kg, SC) once. At 1, 2, 6, and 12 hours after treatment, 6 calves from each treatment group were euthanatized. Antimicrobial drug concentrations were assayed in various specimens. Peak plasma concentration (Cmax)-to-minimum inhibitory concentration (MIC; Cmax-to-MIC) ratios and the area under the concentration versus time curve over a 12-hour period-to-MIC ratios (AUC(12h)-to-MIC) were calculat-ed. RESULTS: Danofloxacin and enrofloxacin had MICs of 0.03 microg/mL for the M. haemolytica challenge isolate. Danofloxacin administered at doses of 6 and 8 mg/kg resulted in numerically higher geometric mean concentrations of danofloxacin in plasma and all respiratory tissues than geometric mean concentrations of enrofloxacin after treatment with enrofloxacin. Geometric mean concentrations of enrofloxacin were numerically higher than geometric mean concentrations of ciprofloxacin metabolite in plasma and almost all respiratory tissues. Danofloxacin and enrofloxacin achieved Cmax-to-MIC ratios >10 and AUC(12h)-to-MIC ratios >125 hours. CONCLUSIONS AND CLINICAL RELEVANCE: When used to treat pneumonic pasteurellosis in calves, danofloxacin and enrofloxacin can be expected to deliver concentration-dependent bactericidal activity against M. haemolytica, the bacteria most commonly associated with bovine respiratory tract disease.  相似文献   

18.
魏东  张乃生 《兽医大学学报》2013,(11):1715-1719
通过N-羟基琥珀酰亚胺活性酯法将诺氟沙星、环丙沙星、达氟沙星和沙拉沙星分别与牛血清白蛋白偶联制备免疫抗原,与卵清白蛋白偶联制备检测抗原,筛选一种可用于多种氟喹诺酮残留的检测抗体。将免疫抗原分别免疫獭兔制备多克隆抗体,采用间接竞争ELISA法测定抗体特异性。诺氟沙星抗体特异性较强,与同类药物的交叉反应较少,沙拉沙星抗体与同类药物发生交叉反应最多,且与诺氟沙星、环丙沙星和恩诺沙星的交叉反应率较高。结果表明,确定沙拉沙星抗体作为进一步研究的抗体。  相似文献   

19.
In order to establish epidemiological cut-off values (ECOFFs) of Salmonella for three animal-specific antibiotics (florfenicol,apramycin and danofloxacin) in Guangdong province.A total of 166 strains of Salmonella isolates from chicken intestinal tract from veterinary clinics and farms in Guangdong province in 2017 were recruited in this study,the minimum inhibitory concentrations (MIC) of florfenicol,apramycin and danofloxacin were determined in triplicate for each bacterial strain using the agar dilution method on Mueller-Hinton agar plates according to the CLSI reference method (CLSI-M100-S26).ECOFFs were calculated for the MIC data sets by application of nonlinear regression analysis,NRI(normalized resistance interpretation) and ECOFFinder software.MIC distribution of florfenicol,apramycin and danofloxacin against Salmonella from 2 to >512,4 to >512 and 0.015 to 64 μg/mL,respectively.MIC50 and MIC90 for apramycin,florfenicol and danofloxacin were 256 and >512,16 and >512,0.5 and 16 μg/mL,respectively.MIC distribution of apramycin and florfenicol presented obvious unimodal shape,while that of danofloxacin was a discontinuous multi-peak.The ECOFFs of florfenicol,apramycin and danofloxacin were recommended to be 16,16 and 0.125 μg/mL,respectively.In present study,the ECOFFs of Salmonella from chicken intestinal tract for apramycin,florfenicol and danofloxacin were determined,which provided scientific basis for resistance surveillance.  相似文献   

20.
The purpose of this study was to determine the concentration of enrofloxacin and its active metabolite, ciprofloxacin, in alveolar macrophages (AM) and epithelial lining fluid (ELF) of the lungs in comparison to plasma concentrations in healthy dogs. Eleven dogs were given a single oral dose (5 mg/kg) of enrofloxacin. Four hours later, plasma and bronchoalveolar lavage (BAL) fluid were collected. Cells were separated from the BAL fluid and lysed for determination of drug concentrations within AM. Supernatant was used to determine concentrations of drugs in ELF. Drug assays were performed by high-performance liquid chromatography.
  The concentration of enrofloxacin (mean ± SD) was 0.33 ± 0.14 μg/mL in plasma, 3.34 ± 2.4 μg/mL in AM and 4.79 ± 5.0 μg/mL in ELF. The concentration of ciprofloxacin was 0.42 ± 0.26 μg/mL in plasma, 1.15 ± 1.03 μg/mL in AM and 0.26 ± 0.26 μg/mL in ELF. Mean concentrations of both drugs in AM were greater than in plasma (AM to plasma ratio, 10.3 for enrofloxacin and 4.7 for ciprofloxacin). Mean concentrations of enrofloxacin, but not ciprofloxacin, in ELF were greater than in plasma (ELF to plasma ratio, 13.5 for enrofloxacin and 0.52 for ciprofloxacin). Enrofloxacin concentrations in AM and ELF largely exceeded the MICs of the major bacterial pathogens and surpassed by about two times the breakpoint MIC of that drug, and ciprofloxacin concentrations in AM surpassed the MIC of many susceptible organisms. These results suggest that sufficient antimicrobial activity is present in AM and ELF of dogs following oral administration of enrofloxacin to be effective in the treatment of lower respiratory tract infections involving susceptible organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号