首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
小肽转运载体1的生物学特性及其功能   总被引:1,自引:0,他引:1  
小肽转运载体1(PepT1)是H+/肽偶联的转运载体。该载体通过利用肠腔到肠细胞的质子梯度来转运二肽和三肽。PepT1对游离氨基酸、多肽在动物肠道内的转运调控具有重要作用。本文综述了PepT1的分类、生物学特征及功能,并探讨了影响PepT1活性调控的因素。  相似文献   

2.
为明确鸡胚肠上皮细胞中Toll样受体(Toll-like receptors,TLR)的表达情况,本研究采用嗜热菌蛋白酶分离培养18日龄鸡胚的肠上皮细胞,在形态学观察及免疫细胞化学法鉴定基础上,采用RT-PCR方法检测其TLR表达谱,并对不同品种鸡胚肠上皮细胞TLR表达谱进行了比较研究。结果表明,应用嗜热菌蛋白酶消化法得到的鸡胚肠上皮细胞生长状况良好;采用低速离心和差速贴壁进行纯化,得到90%以上纯度的鸡胚肠上皮细胞;纯化后的细胞经形态学观察及细胞角蛋白单克隆抗体鉴定为阳性;10种TLR在鸡胚肠上皮细胞上均有mRNA表达,但其丰度存在明显差异;不同品种鸡胚肠上皮细胞TLR表达谱均无显著差异。  相似文献   

3.
This study was conducted to investigate the expression of oligopeptide transporter 2 (PepT2) and its potential function in bovine mammary gland. First, the PepT2 mRNA and protein were determined in cultured mammary epithelial cells. Then the effects of lactogenic hormones (prolactin, hydrocortisone or insulin) and substrate (threonyl-phenylalanyl-phenylalanine) on PepT2 were investigated. The PepT2 mRNA and protein were successfully detected in bovine mammary epithelial cells. PepT2 gene expression was enhanced by the addition of 50, 500 and 5000 ng/ml prolactin, 10 and 100 ng/ml hydrocortisone, and 50, 500, 5000 and 50,000 ng/ml insulin. PepT2 mRNA abundance was increased when 5, 10 and 15% of threonyl-phenylalanyl-phenylalanine was included. Responses of PepT2 to lactogenic hormones and oligopeptide inferred that it may play an important role in bovine mammary gland.  相似文献   

4.
本研究旨在研究益生性鼠李糖乳酸杆菌LGA对体外培养的鸡小肠上皮细胞β-防御素-9 (AvBD9)表达的调节作用.选用鼠李糖乳酸杆菌LGA对体外培养的鸡小肠上皮细胞进行剂量依赖性及时间依赖性刺激实验,利用实时荧光定量PCR(fluorescence quantitative PCR,FQ-PCR)从mRNA水平研究刺激后上皮细胞AvBD9基因表达水平的差异.结果表明,不同浓度(2×105、2×106、2×107 cfu· mL-1)鼠李糖乳酸杆菌LGA均能上调AvBD9mRNA的表达,且在不同细菌浓度之间AvBD9 mRNA的表达存在差异.热灭活鼠李糖乳杆菌LGA亦能上调AvBD9基因表达,且上调值显著高于活菌(P<0.05).鼠李糖乳杆菌LGA刺激上皮细胞后AvBD9表达存在时间依赖关系,12 h时AvBD9的表达达到峰值.Western blot检测结果显示,鼠李糖乳杆菌LGA刺激后的上皮细胞培养上清中存在AvBD9蛋白表达,表明AvBD9蛋白可以分泌到细胞外而发挥其生物学功能.益生性鼠李糖乳酸杆菌LGA与鸡肠道上皮细胞的相互作用过程中,鼠李糖乳酸杆菌LGA能够促进上皮细胞抗菌肽β-防御素-9的表达.本研究结果提示益生性乳杆菌可能通过促进肠道上皮抗菌肽的表达而发挥其益生作用.  相似文献   

5.
本研究旨在建立黄姑鱼(Nibea albiflora)肠道上皮细胞的体外分离培养及鉴定方法,为海水鱼类肠道功能及其发病机制相关研究提供细胞模型。以黄姑鱼肠道组织为研究对象,采用胰蛋白酶(0.25%)、胶原蛋白酶(1 mg/mL)和透明质酸酶(0.16 mg/mL)联合消化法对肠道组织进行不同时间(0、20、40、60和80 min)的消化,并对消化后的肠道细胞及残留肠道组织分别进行台盼蓝和苏木精-伊红(HE)染色,再通过显微镜观察确定终止细胞消化的最佳时间。在此基础上,对肠道上皮细胞进行原代培养并传代。在传代培养过程中,通过分析细胞形态、细胞生长曲线和肠道上皮细胞标志性蛋白表达等对培养细胞进行鉴定。结果表明:黄姑鱼肠道组织在消化40 min时便可以得到较多的肠道上皮细胞,在消化60 min时可以得到更多的细胞团,至80 min时肠道上皮细胞基本从基膜上全部消化下来,因此,本研究建议在40~60 min终止细胞消化为宜。所培养的传代肠道细胞呈"铺路石"形态,生长曲线呈明显的"S"形,经角蛋白-18(CK-18)免疫荧光染色呈阳性。进一步的实时荧光定量PCR分析表明上皮细胞标志性蛋白封闭蛋白(Claudin)、闭合蛋白(Occludin)、闭锁小带蛋白-1(ZO-1)、碱性磷酸酶(AKP)和上皮型钙黏蛋白(E-cadherin)在培养的传代细胞中均有表达。综合上述结果表明,本研究所分离培养的细胞即为黄姑鱼肠道上皮细胞。综上所述,本研究成功建立了黄姑鱼肠道上皮细胞的体外分离培养及鉴定方法,为海水鱼类肠道功能及其相关机制研究提供了技术支撑。  相似文献   

6.
为探讨丁酸钠对肠道寡肽转运载体(PepT1)及钠氢交换载体(NHE2、NHE3)mRNA表达丰度的调控,取刚出生未吮乳的仔猪小肠黏膜组织,建立猪小肠上皮细胞(IEC)分离及原代培养方法。分别用0,2,4,8 mmol/L的丁酸钠处理体外培养的猪小肠黏膜上皮细胞96 h后,提取细胞总RNA,以18S rRNA为内标基因,用实时荧光定量RT-PCR法(SYBR GreenⅠ试剂盒)检测PepT1、NHE2及NHE3 mRNA在不同浓度丁酸钠处理细胞中的表达丰度。结果表明,体外培养的猪小肠黏膜上皮细胞用丁酸钠处理96 h后,PepT1和NHE2 mRNA的表达丰度均显著增加(P0.05),且呈现剂量依赖效应;NHE3 mRNA表达丰度的剂量效应不明显,只有在高浓度丁酸钠(8 mmol/L)组时才显著高于对照组(P0.05)。  相似文献   

7.
本试验旨在研究槲皮素促进猪肠上皮细胞利用蛋白质的作用及机制。猪肠上皮细胞孵育48 h后试验组分别用含0.1、0.2、0.4、0.8和1.6 mg/L槲皮素的二甲基亚砜(DMSO)溶液处理72 h,对照组采用0.2%DMSO处理。采用二喹啉甲酸(BCA)测定受试细胞中蛋白质的含量;采用实时荧光定量PCR(RT-qPCR)法测定氨基酸和小肽转运载体以及哺乳动物雷帕霉素靶蛋白(mTOR)信号通路相关基因的mRNA相对表达量;采用Western blot法测定mTOR信号通路相关基因的蛋白表达。结果表明:与对照组相比,1)0.4和0.8 mg/L槲皮素均极显著增加猪肠上皮细胞中蛋白质的含量(P<0.01)。2)1.6 mg/L槲皮素极显著提高猪肠上皮细胞中兴奋性氨基酸转运载体1(EAAC1)、谷氨酰胺载体2(ASCT2)、氨基酸转运载体A2(ATA2)、L型氨基酸转运载体2(LAT2)、阳离子氨基酸转运载体1(CAT1)、b 0,+系统氨基酸转运载体(rBAT)、y+L系统氨基酸转运载体1(y+LAT1)、y+L系统氨基酸转运载体2(y+LAT2)和寡肽转运载体1(PepT1)mRNA相对表达量(P<0.01)。3)0.4 mg/L槲皮素极显著降低猪肠上皮细胞中结节性硬化复合物1(TSC1)mRNA相对表达量(P<0.01);0.8 mg/L槲皮素极显著增加mTOR和核糖体蛋白S6(RPS6)mRNA相对表达量并极显著降低TSC1 mRNA相对表达量(P<0.01);1.6 mg/L槲皮素极显著增加mTOR、真核起始因子4E结合蛋白1(4E-BP1)、真核细胞翻译起始因子4E(eIF4E)、真核细胞翻译起始因子4B(eIF4B)、真核细胞翻译起始因子4A(eIF4A)和RPS6 mRNA相对表达量(P<0.01)。4)0.1和1.6 mg/L槲皮素极显著提高猪肠上皮细胞中mTOR、eIF4E和eIF4A蛋白表达量并极显著降低4E-BP1蛋白表达量(P<0.01)。由此可见,槲皮素可通过调控氨基酸转运载体、小肽转运载体及mTOR信号通路相关基因的表达来促进猪肠上皮细胞对蛋白质的利用。  相似文献   

8.
A reproducible and original method for the preparation of chicken intestine epithelial cells from 18-day-old embryos for long-term culture was obtained by using a mechanical isolation procedure, as opposed to previous isolation methods using relatively high concentrations of trypsin, collagenase, or EDTA. Chicken intestine epithelial cells typically expressed keratin and chicken E-cadherin, in contrast to chicken embryo fibroblasts, and they increased cell surface MHC II after activation with crude IFN-gamma containing supernatants, obtained from chicken spleen cells stimulated with concanavalin A or transformed by reticuloendotheliosis virus. Eimeria tenella was shown to be able to develop until the schizont stage after 46 hr of culture in these chicken intestinal epithelial cells, but it was not able to develop further. However, activation with IFN-gamma containing supernatants resulted in strong inhibition of parasite replication, as shown by incorporation of [3H]uracil. Thus, chicken enterocytes, which are the specific target of Eimeria development in vivo, could be considered as potential local effector cells involved in the protective response against this parasite.  相似文献   

9.
小肽转运蛋白(PepT1)基因研究进展   总被引:9,自引:0,他引:9  
小肽作为蛋白质的主要消化产物 ,在氨基酸消化、吸收和代谢中起着重要作用。小肽与游离氨基酸的吸收是两个相互独立的转运系统 ,与游离氨基酸相比 ,小肽具有吸收速度快、耗能低、不易饱和 ,且各种肽之间转运无竞争性与抑制性等特点。本文主要综述了小肽转运机制的特点和小肽转运蛋白(PepT1)分子生物学方面的研究进展 ,包括PepT1分子结构特点 ,PepT1cDNA的克隆 ,不同动物之间PepT1氨基酸序列的同源性 ,PepT1mRNA在不同动物、不同组织中的分布 ,以及营养水平对PepT1基因表达的影响 ;并就需要进一步深入研究的问题进行了探讨  相似文献   

10.
Chronic enteritis can produce an excess of reactive oxygen species resulting in cellular damage. Stanniocalcin-1(STC-1) reportedly possesses anti-oxidative activity, the aim of this study was to define more clearly the direct contribution of STC-1 to anti-oxidative stress in cattle. In this study, primary intestinal epithelial cells (IECs) were exposed to hydrogen peroxide (H2O2) for different time intervals to mimic chronic enteritis-induced cellular damage. Prior to treatment with 200 µM H2O2, the cells were transfected with a recombinant plasmid for 48 h to over-express STC-1. Acridine orange/ethidium bromide (AO/EB) double staining and trypan blue exclusion assays were then performed to measure cell viability and apoptosis of the cells, respectively. The expression of STC-1 and apoptosis-related proteins in the cells was monitored by real-time PCR and Western blotting. The results indicated that both STC-1 mRNA and protein expression levels positively correlated with the duration of H2O2 treatment. H2O2 damaged the bovine IECs in a time-dependent manner, and this effect was attenuated by STC-1 over-expression. Furthermore, over-expression of STC-1 up-regulated Bcl-2 protein expression and slightly down-regulated caspase-3 production in the damaged cells. Findings from this study suggested that STC-1 plays a protective role in intestinal cells through an antioxidant mechanism.  相似文献   

11.
Over the last 50 yr, the study of intestinal peptide transport has rapidly evolved into a field with exciting nutritional and biomedical applications. In this review, we describe from a historical and current perspective intestinal peptide transport, the importance of peptides to whole-body nutrition, and the cloning and characterization of the intestinal peptide transporter, PepT1. We focus on the nutritional significance of peptide transport and relate these findings to livestock and poultry. Amino acids are transported into the enterocyte as free AA by a variety of AA transporters that vary in substrate specificity or as di- and tripeptides by the peptide transporter, PepT1. Expression of PepT1 is largely restricted to the small intestine in most species; however, in ruminants, peptide transport and activity is observed in the rumen and omasum. The extent to which peptides are absorbed and utilized is still unclear. In ruminants, peptides make a contribution to the portal-drained visceral flux of total AA and are detected in circulating plasma. Peptides can be utilized by the mammary gland for milk protein synthesis and by a variety of other tissues. We discuss the factors known to regulate expression of PepT1 including development, diet, hormones, diurnal rhythm, and disease. Expression of PepT1 is detected during embryological stages in both birds and mammals and increases with age, a strategic event that allows for the immediate uptake of nutrients after hatch or birth. Both increasing levels of protein in the diet and dietary protein deficiencies are found to upregulate the peptide transporter. We also include in this review a discussion of the use of dietary peptides and potential alternate routes of nutrient delivery to the cell. Our goal is to impart to the reader the nutritional implications of peptide transport and dietary peptides and share discoveries that shed light on various biological processes, including rapid establishment of intestinal function in early neonates and maintenance of intestinal function during fasting, starvation, and disease states.  相似文献   

12.
The role of fimbria in adherence of an avian pathogenic Escherichia coli (APEC) O78 strain 789 to chicken intestine was studied. Bacterial adhesion to tissue sections representing the regions within the chicken intestinal tract was determined by using immunohistochemical methods. E. coli 789 grown to express the type 1 fimbria adhered efficiently to the crop epithelium, to the lamina propria of intestinal villi, and to the apical surfaces of both the mature as well as the crypt-located enterocytes in intestinal villi, whereas no adhesion to mucus-producing goblet cells was detected. The adhesion was inhibited by mannoside and the role of type 1 fimbriae in the observed adhesion was confirmed with a recombinant strain expressing type 1 fimbriae genes cloned from E. coli and Salmonella enterica. E. coli 789 strain grown to favor AC/I fimbriae expression as well as the recombinant E. coli strain expressing the fac genes adhered to goblet cells but only poorly to the other epithelial sites. E. coli strain 789 as well as S. enterica serovar Typhimurium IR715 and S. enterica serovar Enteriditis TN2 strains were able to multiply in ileal mucus medium. The type 1 fimbria expressing bacteria adhered to the ileal mucus, whereas the AC/I fimbriated strains showed poor adherence to the mucus. The adhesion of E. coli 789 onto the crop epithelium and the follicle associated epithelium of the chicken ileum was efficiently inhibited by an adhesive strain ST1 of Lactobacillus crispatus isolated from chicken, whereas poor inhibition of E. coli adherence was observed with the weakly adhesive L. crispatus strain 134mi. The type 1 fimbriae may be important in colonization of the chicken intestine by APEC and Salmonella.  相似文献   

13.
1. Morphological changes in the intestinal villi, cell area and cell mitosis number in the duodenal epithelial cells were compared in cockerels fasted for 1, 2 and 3 d, and also when refed for 1 and 2 d after 3 d of fasting, to demonstrate whether these morphological changes are related to intestinal function. Alterations in the fine structure of vacuoles in epithelial cells were also examined in each group to investigate whether the vacuolar changes are associated with these morphological changes, and to obtain an index for judging the nutritional condition of the chicken intestine. 2. Fasting induced decreases in villus height, cell area and cell mitosis number, which recovered rapidly after refeeding, suggesting that these parameters are related to changes in intestinal function and may be useful for assessing intestinal function. 3. At 1 d of fasting, small electron-dense bodies appeared in the absorptive epithelial cells, some of them fusing with each other. As the fasting period increased, these small bodies developed to moderate-sized nascent autophagic vacuoles containing various kinds of electron-dense contents and finally became large autophagic vacuoles with electron-lucent contents. Some vacuoles showed positive acid phosphatase reactions, which indicated that they were lysosomal autophagic vacuoles containing hydrolytic enzymes. 4. After 1 d of refeeding the large autophagic vacuoles seen after 3 d fasting rapidly decreased to the small electron-dense bodies seen after 1 d of fasting. 5. These findings suggest that intestinal epithelial cells have the ability to digest their own cell components to supply nutrients during fasting by means of lysosomal active autophagic transport mechanisms: after refeeding, the epithelial cells return to the absorption of nutrients. 6.The present results demonstrate that the autophagic vacuolar changes are correlated with changes in intestinal villus height, cell area and cell mitosis number induced by fasting and refeeding; this indicates that autophagic vacuoles are a useful index of the nutritional condition of chicken intestine. The greater the number of electron-lucent vacuoles there are in the duodenal absorptive cells, the lower the nutritional condition of the chicken intestine.  相似文献   

14.
We evaluated whether a bovine intestinal epithelial (BIE) cell line could serve as a useful in vitro model system for studying antiviral immune responses in bovine intestinal epithelial cells (IECs) and for the primary screening of immunobiotic microorganisms with antiviral protective capabilities. Immunofluorescent analyses revealed that toll-like receptor 3 (TLR3) was expressed in BIE cells, and the results of real-time quantitative PCR showed that these cells respond to stimulation with poly(I:C) by up-regulating pro-inflammatory cytokines and type I interferons. In addition, we demonstrated that BIE cells are useful for the primary screening of immunobiotic lactic acid bacteria strains which are able to beneficially modulate antiviral immune responses triggered by TLR3 activation in bovine IECs. The characterization of BIE cells performed in the present study represents an important step towards the establishment of a valuable bovine in vitro system that could be used for the development of immunomodulatory feed for bovine hosts.  相似文献   

15.
采用实时荧光定量PCR(fluorescence quantitative PCR,FQ-PCR)检测益生性发酵乳酸杆菌F6刺激鸡小肠上皮细胞后抗菌肽β-防御素-9(AvBD9)基因表达变化,为从益生菌与上皮细胞抗菌肽表达关系的新角度解析益生菌发挥益生作用的新途径和机制提供一定的基础及依据。利用不同剂量(2×105,2×106,2×107 CFU)的发酵乳酸杆菌F6分别刺激原代培养的鸡小肠上皮细胞4h,提取刺激后的细胞总RNA,反转录为cDNA,FQ-PCR检测抗菌肽AvBD9基因表达变化。结果表明,未受刺激的正常对照组也检测到AvBD9mRNA的表达,发酵乳酸杆菌F6能上调AvBD9基因表达。刺激组中AvBD9mRNA的表达在不同剂量组之间存在差异。2×105 CFU/mL组AvBD9mRNA的表达量极显著高于未受细菌刺激的对照组和2×106 CFU/mL组(P〈0.01),显著高于2×107 CFU/mL组(P〈0.05)。2×106 CFU/mL组和2×107 CFU/mL组AvBD9mRNA的表达量显著高于未受细菌刺激的对照组(P〈0.05),但2×106 CFU/mL组和2×107 CFU/mL组之间无显著差异(P〉0.05)。发酵乳杆菌F6与鸡小肠上皮细胞相互作用过程中可提高抗菌肽AvBD9mRNA的表达,且存在剂量依赖性。  相似文献   

16.
Probiotic yeasts may provide protection against intestinal inflammation induced by enteric pathogens. In piglets, infection with F4+ enterotoxigenic Escherichia coli (ETEC) leads to inflammation, diarrhea and intestinal damage. In this study, we investigated whether the yeast strains Saccharomyces cerevisiae (Sc, strain CNCM I-3856) and S. cerevisiae variety boulardii (Sb, strain CNCM I-3799) decreased the expression of pro-inflammatory cytokines and chemokines in intestinal epithelial IPI-2I cells cultured with F4+ ETEC. Results showed that viable Sc inhibited the ETEC-induced TNF-α gene expression whereas Sb did not. In contrast, killed Sc failed to inhibit the expression of pro-inflammatory genes. This inhibition was dependent on secreted soluble factors. Sc culture supernatant decreased the TNF-α, IL-1α, IL-6, IL-8, CXCL2 and CCL20 ETEC-induced mRNA. Furthermore, Sc culture supernatant filtrated fraction < 10 kDa displayed the same effects excepted for TNF-α. Thus, our results extended to Sc (strain CNCM I-3856) the inhibitory effects of some probiotic yeast strains onto inflammation.  相似文献   

17.
The Na(+/)glucose cotransporter (SGLT1) is the major route for the transport of dietary sugars from the lumen of the intestine into enterocytes. Regulation of this protein is essential for the provision of glucose to the body and avoidance of intestinal malabsorption. This has important nutritional implications in particular for young and growing animals. It has been demonstrated that dietary sugars and artificial sweeteners increase SGLT1 expression and the capacity of the gut to absorb monosaccharides. Furthermore, diets supplemented with artificial sweeteners have been shown to improve growth and performance of weaning piglets. In this review, after describing the organization of intestinal epithelium, the type of gut hormones released in response to dietary carbohydrates, the mechanism underlying the transcellular transport of glucose in the intestine is outlined. Next, a historical background to the work carried out in various laboratories aimed at identifying molecular mechanisms involved in regulation of intestinal glucose transporter, SGLT1, is described. Subsequently, the more recent data on the role of intestinal glucose, or sweet, sensor T1R2 + T1R3, a G protein-coupled receptor, required for upregulation of SGLT1 by dietary sugars and artificial sweeteners, are presented. The glucose sensor subunits, T1R2 + T1R3, are members of the taste receptor family 1, T1R, and are expressed in the gut enteroendocrine cells. Sensing of dietary sugars and artificial sweeteners by T1R2 + T1R3 activates a pathway in endocrine cells leading to secretion of gut hormones. Finally, after describing molecular mechanisms by which a specific gut hormone released by endocrine cells may regulate SGLT1 expression in the neighboring absorptive enterocytes, the application of these findings to enhancing intestinal capacity to absorb dietary sugars in weaning piglets is presented. A better understanding of the molecular events involved in regulation of SGLT1 will allow the identification of nutritional targets with attendant promise of avoiding nutrient malabsorption and enhancing growth and well-being of species.  相似文献   

18.
小肽转运载体2及其在乳腺泌乳中的作用   总被引:1,自引:1,他引:0  
作为一种潜在的重要的乳腺小肽转运系统,PepT2在乳腺氨基酸氮转运、降低乳汁药物分布以及乳腺疾病治疗方面都起到重要作用.对PepT2在乳腺中作用的深入研究在泌乳生理和临床治疗上都有着非常重要的意义.本文主要从PepT2的蛋白质结构与功能、底物转运特性、表达调控以及其在泌乳生理中的作用4个方面进行简要综述.  相似文献   

19.
Mycotoxins are structurally diverse fungal metabolites that can contaminate a variety of dietary components consumed by animals and humans. It is considered that 25% of the world crop production is contaminated by mycotoxins. The clinical toxicological syndromes caused by ingestion of moderate to high amounts of mycotoxins and their effect on the immune system have been well characterized. However, no particular attention has been focused on the effects of mycotoxins on the local intestinal immune response. Because of their location, intestinal epithelial cells (IECs) could be exposed to high doses of mycotoxins. As a component of the innate local immune response, intestinal epithelial cells have developed a variety of mechanisms which act to reduce the risk of infection by microorganisms or intoxication by toxic compounds. This review summarises the innate immune response developed by intestinal epithelial cells and reports the literature concerning the effects of mycotoxins on them. Particularly, the effects of mycotoxins on the maintenance of a physical barrier by epithelial cells will be discussed together with their effect on extrinsic protective components of the innate intestinal immunity: mucus secretion, antimicrobial peptide generation, IgA and pro-inflammatory cytokine release.  相似文献   

20.
轮状病毒(RV)是引起婴幼儿、幼畜禽急性肠胃炎的人畜共患病原,常与其他病原体混合感染,多以呕吐,严重水样腹泻,脱水为临床症状,感染后具有较高病死率,对人类公共卫生以及养殖业造成极大危害。RV病原相关分子模式(PAMP)可被肠上皮细胞(IECs)中一组可遗传的模式识别受体(PRR)识别,通过IECs、先天免疫细胞与RV互作,激活细胞内信号级联,从而迅速诱导炎症和多种抗病毒基因表达。论文就轮状病毒特性、肠道先天免疫等方面进行综述,探讨RV感染宿主IECs后诱导不同抗病毒信号通路,为利用先天免疫途径预防轮状病毒感染提供了一定的参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号