首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
Genomic imprinting and DNA methylation play an important role in mammalian development. Many cloned animals showed heterogeneous DNA methylation profiles. However, there are fewer reports in cloned lambs because of a lack of genomic imprinting information. In this study, we investigated DNA methylation patterns in CpG islands and differentially methylated regions of putative imprinted gene Peg10 and imprinted genes Dlk1, Igf2R and H19 in cloned lambs. Five organs from two cloned lambs died shortly after birth and two normal controls were investigated. We observed normal DNA methylation profiles in cloned lambs. The imprinted genes Dlk1, Igf2R and H19 in livers, kidneys, hearts, muscles and lungs of the two cloned lambs exhibited relatively normal DNA methylation, except for Peg10 showing some differences between controls and cloned lambs. Our results indicate that somatic cell nuclear transfer-produced sheep exhibited relatively normal DNA methylation pattern and experienced normal DNA methylation reprogramming at imprinted loci.  相似文献   

3.
DNA甲基化是基因组主要的表观遗传修饰方式之一.核移植重构胚在对供体细胞基因组进行甲基化重编程过程中会出现异常的甲基化模式,而异常的甲基化重编程是导致克隆胚早期死亡及克隆动物发育畸形的主要原因.论文针对体细胞克隆动物基因组DNA的甲基化模式、造成克隆胚胎甲基化异常的原因及异常甲基化对重构胚胎发育的影响等进行了综述.深入研究核移植重构胚甲基化重编程的机制,有助于完善核移植技术,提高克隆效率,使其更好地应用于基础研究和生产实践.  相似文献   

4.
For the successful production of cloned animals by somatic cell nuclear transfer (NT), the epigenetic status of the differentiated donor cell is reversed to an embryonic totipotent status. However, in NT embryos, this process is aberrant, with genomic hypermethylation consistently observed. Here, we investigated the effects of silencing DNA methyltransferase 1 (DNMT1) mRNA by small interfering RNA (siRNA) on the DNA methylation status of the satellite I region and in vitro development of bovine NT embryos. First, the levels of DNMT1 expression were analyzed at 0, 24, 48, 72, 120 and 192 h after in vitro culture. Real-time PCR and western blotting analyses detected a significant decrease in DNMT1 mRNA in the siRNA-injected NT (siRNA-NT) group up to 72 h after in vitro culture. Next, the levels of DNA methylation of the satellite I region were analyzed at several time points after in vitro culture. The level of DNA methylation detected in siRNA-NT embryos was significantly less than those in NT embryos throughout in vitro development. Moreover, the developmental rate of embryos to blastocysts in the siRNA-NT group was significantly higher than that of NT embryos. Our data suggest that knockdown of DNMT1 mRNA in NT embryos can induce DNA demethylation, which may enhance reprogramming efficiency.  相似文献   

5.
In normal tissues, methylation of CpG islands is generally accepted to be limited to the inactive X-chromosome and imprinting clusters. Gene Sphk1 has shown complex organization, indicated by multiple alternative splicing and tissue-dependent DNA methylation within the limited area (T-DMR) of the CpG island in the rat. Comparisons among human, mouse and rat SPHK1/Sphk1 genomic DNA revealed five coding exons and association of a CpG island at the 5' end in common. We also found two novel subtypes, for a total of eight mRNA subtypes generated through selective usage of untranslated first exons. A 38-bp region at the 5'-end of T-DMR is highly conserved. This restricted area is specifically hypomethylated in the brain. Here, we examine the complex genetic/epigenetic features of the SPHK1/Sphk1 CpG island, and suggest that the T-DMR is the core target for tissue-dependent CpG island methylation.  相似文献   

6.
Retention of fetal membranes (RFM) is the major post-partum disorder in dairy cattle. Cyp19 gene encodes the aromatase enzyme responsible for catalyzing the rate limiting step in estrogen biosynthesis, an important hormone for placental maturation and expulsion. The present study was aimed for comparative analysis of Cyp19 gene expression and its epigenetic regulation in placental cotyledons of animals with and without RFM. Significantly lower expression of Cyp19 gene was found in placental samples of RFM affected animals in comparison to normal animals. Methylation analysis of 5 CpG dinucleotides of placenta specific Cyp19 gene promoter I.1 and proximal promoter, PII showed hypo-methylation of both PI.1 and PII in term placenta of normal and diseased animals. In conclusion, a mechanism other than promoter methylation is responsible for decreased aromatase expression in placental cotyledons of animals suffering from RFM.  相似文献   

7.
Many observations have been made on cloned embryos and on adult clones by somatic cell nuclear transfer (SCNT), but it is still unclear whether the progeny of cloned animals is presenting normal epigenetic status. Here, in order to accumulate the information for evaluating the normality of cloned cattle, we analyzed the DNA methylation status on satellite I region in blastocysts obtained from cloned cattle. Embryos were produced by artificial insemination (AI) to non‐cloned or cloned dams using semen from non‐cloned or cloned sires. After 7 days of AI, embryos at blastocyst stage were collected by uterine flushing. The DNA methylation levels in embryos obtained by using semen and/or oocytes from cloned cattle were similar to those in in vivo embryos from non‐cloned cattle. In contrast, the DNA methylation levels in SCNT embryos were significantly higher (P < 0.01) than those in in vivo embryos from non‐cloned and cloned cattle, approximately similar to those in somatic cells used as donor cells. Thus, this study provides useful information that epigenetic status may be normal in the progeny of cloned cattle, suggesting the normality of germline cells in cloned cattle.  相似文献   

8.
Successful cloning requires reprogramming of epigenetic information of the somatic nucleus to an embryonic state. However, the molecular mechanisms regarding epigenetic reprogramming of the somatic chromatin are unclear. Herein, we transferred NIH3T3 cell nuclei into enucleated mouse oocytes and evaluated the histone H3 dimethyl-lysine 4 (H3K4me2) dynamics by immunocytochemistry. A low level of H3K4me2 in the somatic chromatin was maintained in pseudo-pronuclei. Unlike in vitro fertilized (IVF) embryos, the methylation level of nuclear transfer (NT) embryos was significantly increased at the 8-cell stage. NT embryos showed lower H3K4me2 intensity than IVF embryos at the 2-cell stage, which is when the mouse embryonic genome is activated. Moreover, the H3K4me2 signal was weak in the recloned embryos derived from single blastomeres of the NT embryos, whereas it was intense in those from IVF embryos. Two imprinted genes, U2afbp-rs and Xist, were abnormally transcribed in cloned embryos compared with IVF embryos, and this was partly correlated to the H3K4me2 level. Our results suggest that abnormal reprogramming of epigenetic markers such as histone acetylation and methylation may lead to dysregualtion of gene expression in cloned embryos.  相似文献   

9.
DNA甲基化(DNA methylation)是一种动态、可逆并可以遗传的表观遗传修饰模式,主要发生在哺乳动物原始生殖细胞和早期胚胎发育过程中,能够通过高动态和协同的核酶网络附着在DNA的CpG区域,同时还通过改变调控区域的功能状态进而调控基因表达且不影响DNA序列所携带的遗传信息。DNA甲基化主要涉及基因组印迹、转座元件沉默、X染色体失活和衰老等多种关键生理过程,在哺乳动物卵母细胞和胚胎发育中发挥着重要作用。本文介绍了DNA甲基化的建立与去除机制及其生物学功能,重点阐述了DNA甲基化在哺乳动物卵母细胞和胚胎发育过程中精准生成、维持、读取和删除等动态变化过程,为进一步研究哺乳动物表观遗传调控提供参考依据。  相似文献   

10.
11.
Epigenetic abnormalities in cloned animals are caused by incomplete reprogramming of the donor nucleus during the nuclear transfer step (first reprogramming). However, during the second reprogramming step that occurs only in the germline cells, epigenetic errors not corrected during the first step are repaired. Consequently, epigenetic abnormalities in the somatic cells of cloned animals should be erased in their spermatozoa or oocytes. This is supported by the fact that offspring from cloned animals do not exhibit defects at birth or during postnatal development. To test this hypothesis in cloned cattle, we compared the DNA methylation level of two imprinted genes (H19 and PEG3) and three non‐imprinted genes (XIST, OCT4 and NANOG) and two repetitive elements (Satellite I and Satellite II) in blood and sperm DNAs from cloned and non‐cloned bulls. We found no differences between cloned and non‐cloned bulls. We also analyzed the DNA methylation levels of four repetitive elements (Satellite I, Satellite II, Alpha‐satellite and Art2) in oocytes recovered from cloned and non‐cloned cows. Again, no significant differences were observed between clones and non‐clones. These results suggested that imprinted and non‐imprinted genes and repetitive elements were properly reprogramed during gametogenesis in cloned cattle; therefore, they contributed to the soundness of cloned cattle offspring.  相似文献   

12.
体细胞核移植(somatic cell nuclear transfer,SCNT)是一种能将已分化的体细胞重编程为全能胚胎的繁殖生物技术,在良种扩繁、濒危物种保护和治疗性克隆等方面有着广泛的应用前景,但极低的克隆效率、克隆动物胎盘异常、出生后胎儿畸形等严重限制了该技术的实际应用。造成克隆效率低和胚胎发育异常的主要原因是供体核表观遗传重编程错误或不完全。1958年,将非洲爪蟾(Xenopus laevis)幼体肠细胞核移入去核卵母细胞,获得了第1例SCNT动物个体;1986年,通过电融合1个卵裂球与去核卵母细胞成功获得了3只存活的羔羊;1997年,将成年母羊的乳腺上皮细胞与去核卵细胞电融合,获得首个SCNT哺乳动物"多利",开启了克隆时代,目前牛、小鼠、山羊、猪、欧洲盘羊、家兔、家猫、马、大鼠、骡子、狗、雪貂、狼、水牛、红鹿、单峰骆驼、食蟹猴等相继成功克隆,其中最引人瞩目的是2018年食蟹猴的成功克隆。作者通过将SCNT胚胎与受精胚胎的发育进行对比,阐述了SCNT过程中DNA甲基化、组蛋白修饰、基因组印迹、染色体状态等的重编程过程和缺陷,并从表观修饰剂、组蛋白去甲基化酶、抑制Xist表达、补充鱼精蛋白和精子RNA方面探讨单独或联合消除表观遗传重编程障碍对克隆效率的影响。随着低样本量测序技术的发展和完善,人们能够在SCNT胚胎中检测到更详细的全基因组表观遗传修饰图谱,进一步揭示SCNT胚胎表观遗传重编程中的缺陷,为提高克隆效率提供了线索。通过上述内容的阐述,希望为后续开发联合消除多种表观遗传障碍而提高克隆效率的策略和思路。  相似文献   

13.
The efficiency of cloning by somatic cell nuclear transfer (SCNT) has remained low. In most cloned embryos, epigenetic reprogramming is incomplete, and usually the genome is hypermethylated. The DNA methylation inhibitor 5-aza-2’-deoxycytidine (5-aza-dC) could improve the developmental competence of cow, pig, cat and human SCNT embryos in previous studies. However, the parameters of 5-aza-dC treatment among species are different, and whether 5-aza-dC could enhance the developmental competence of porcine cloned embryos has still not been well studied. Therefore, in this study, we treated porcine fetal fibroblasts (PFF) that then were used as donor nuclei for nuclear transfer or fibroblast-derived reconstructed embryos with 5-aza-dC, and the concentration- and time-dependent effects of 5-aza-dC on porcine cloned embryos were investigated by assessing pseudo-pronucleus formation, developmental potential and pluripotent gene expression of these reconstructed embryos. Our results showed that 5-aza-dC significantly reduced the DNA methylation level in PFF (0 nM vs. 10 nM vs. 25 nM vs. 50 nM, 58.70% vs. 37.37% vs. 45.43% vs. 39.53%, P<0.05), but did not improve the blastocyst rate of cloned embryos derived from these cells. Treating cloned embryos with 25 nM 5-aza-dC for 24 h significantly enhanced the blastocyst rate compared with that of the untreated group. Furthermore, treating cloned embryos, but not donor cells, significantly promoted pseudo-pronucleus formation at 4 h post activation (51% for cloned embryos treated, 34% for donor cells treated and 36% for control, respectively, P<0.05) and enhanced the expression levels of pluripotent genes (Oct4, Nanog and Sox2) up to those of in vitro fertilized embryos during embryo development. In conclusion, treating cloned embryos, but not donor cells, with 5-aza-dC enhanced the developmental competence of porcine cloned embryos by promotion of pseudo-pronucleus formation and improvement of pluripotent gene expression.  相似文献   

14.
鸡繁殖性能近交衰退是地方鸡遗传资源活体保种过程中面临的重要问题之一,本研究旨在探讨全基因组CpG岛(CpG island,CGI)区DNA甲基化在鸡繁殖性能近交衰退中的作用。分别从狼山鸡高近交组和低近交组中各选取健康母鸡3只,即试验分2个组,每组3个重复,然后采用全基因组重亚硫酸盐测序(WGBS)技术,检测分析两组个体性腺轴组织(包括卵巢和下丘脑)全基因组DNA甲基化差异,筛选差异甲基化区域(DMRs),并对CpG岛区差异甲基化基因进行功能注释和富集分析。结果表明,狼山鸡高近交组和低近交组比较,其卵巢和下丘脑基因组整体甲基化水平均不存在显著差异(P>0.05);高、低近交组间差异甲基化区域检测发现,下丘脑和卵巢中分别检测到5 948和4 593个差异甲基化区域,其中1 798和995个差异甲基化区域位于基因组CpG岛区,分别注释到1 020和552个基因;下丘脑中,这些CpG岛区差异甲基化基因显著富集在信号转导、神经系统发育、生殖系统发育和卵母细胞成熟调控等繁殖相关的GO条目,以及转化生长因子β信号通路、乙型肝炎、脂肪酸代谢、胰岛素信号通路等19条KEGG信号通路(P<0.05);卵巢中,CpG岛区差异甲基化基因显著富集于12条信号通路(P<0.05),包括慢性骨髓白血病、流感A、精氨酸和脯氨酸代谢、粘着连接等,一些与卵子发育和性激素分泌相关的信号通路也被富集到,如黄体酮介导的卵母细胞成熟、卵母细胞减数分裂、GnRH信号通路、雌激素信号通路等,其中包含CDC27、ADCY8、AKT3等10个差异甲基化基因。因此,本研究在狼山鸡高、低近交组间检测到了大量差异甲基化区域,并发现大量差异甲基化基因与繁殖性状相关,推测这些基因CpG岛区DNA甲基化可能在狼山鸡繁殖性能近交衰退调控中发挥重要作用,研究结果为进一步深入探索鸡繁殖性能近交衰退调控机制奠定了基础,为物种资源保护和家禽育种工作提供了理论参考依据。  相似文献   

15.
16.
DNA methylation is an important factor for the regulation of gene expression in early embryos. It is well known that the satellite I sequence is more heavily methylated in bovine somatic cell nuclear transfer (NT-SC) embryos than in embryos derived from in vitro fertilization (IVF). However, the methylation status of bovine embryos obtained by other procedures is not well known. To clarify DNA methylation levels of bovine embryos obtained from various procedures, we examined satellite I sequences in bovine blastocyst (BC) embryos derived from NT-SC, NT using embryonic blastomeres (NT-EM), in vivo (Vivo), IVF and parthenogenetic treatment (PA). Furthermore, in order to evaluate the efficacy of DNA demethylation by the NT procedure, we determined the DNA methylation levels in bovine embryos in which NT was recapitulated (Re-NT). Although the DNA methylation levels in the NT-SC embryos were higher than those in the other embryos, the NT-EM embryos exhibited lower DNA methylation levels. The satellite I sequence in the NT-SC embryos was more demethylated than that in the donor cells. Although the DNA methylation level in the individual NT-SC embryos showed variation, the full-term developmental efficacy of these embryos were not different. These findings suggest that the methylation level of the satellite I sequence at the BC stage is not related to the abnormalities of bovine embryos produced by NT-SC. There was no difference in methylation levels between Re-NT and NT-SC embryos. Our results indicated that the DNA methylation status differed among embryos produced by various methods and that at least some of the demethylation of the donor cell genome occurred in the recipient cytoplast after NT-SC, but the demethylation ability of the NT procedure was noted in the first NT but not in the second NT.  相似文献   

17.
18.
19.
Although it has now been 10 years since the first cloned mammals were generated from somatic cells using nuclear transfer (NT), most cloned embryos usually undergo developmental arrest prior to or soon after implantation, and the success rate for producing live offspring by cloning remains below 5%. The low success rate is believed to be associated with epigenetic errors, including abnormal DNA hypermethylation, but the mechanism of "reprogramming" is unclear. We have been able to develop a stable NT method in the mouse in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. Especially in the mouse, only a few laboratories can make clones from adult somatic cells, and cloned mice are never successfully produced from most mouse strains. However, this technique promises to be an important tool for future research in basic biology. For example, NT can be used to generate embryonic stem (NT-ES) cell lines from a patient's own somatic cells. We have shown that NT-ES cells are equivalent to ES cells derived from fertilized embryos and that they can be generated relatively easily from a variety of mouse genotypes and cell types of both sexes, even though it may be more difficult to generate clones directly. In general, NT-ES cell techniques are expected to be applied to regenerative medicine; however, this technique can also be applied to the preservation of genetic resources of mouse strain instead of embryos, oocytes and spermatozoa. This review describes how to improve cloning efficiency and NT-ES cell establishment and further applications.  相似文献   

20.
Cloned rabbits have been produced for many years by somatic cell nuclear transfer (SCNT). The efficiency of cloning by SCNT, however, has remained extremely low. Most cloned embryos degenerate in utero, and the few that develop to term show a high incidence of post-natal death and abnormalities. The cell type used for donor nuclei is an important factor in nuclear transfer (NT). As reported previously, NT embryos reconstructed with fresh cumulus cells (CC-embryos) have better developmental potential than those reconstructed with foetal fibroblasts (FF-embryos) in vivo and in vitro. The reason for this disparity in developmental capacity is still unknown. In this study, we compared active demethylation levels and morphological changes between the nuclei of CC-embryos and FF-embryos shortly after activation. Anti-5-methylcytosine immunofluorescence of in vivo-fertilized and cloned rabbit embryos revealed that there was no detectable active demethylation in rabbit zygotes or NT-embryos derived from either fibroblasts or CC. In the process of nuclear remodelling, however, the proportion of nuclei with abnormal appearance in FF-embryos was significantly higher than that in CC-embryos during the first cell cycle. Our study demonstrates that the nuclear remodelling abnormality of cloned rabbit embryos may be one important factor for the disparity in developmental success between CC-embryos and FF-embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号