首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A spray inoculation of the first leaf of 2-leaf stage cucumber plants with a non-pathogenic isolate of Alternaria cucumarina or Cladosporium fulvum before a challenge inoculation with the pathogen Sphaerotheca fuliginea induced systemic resistance to powdery mildew on leaves 2–5. Systemic resistance was expressed by a significant (p < 0.05) reduction in the number of powdery mildew colonies produced on each leaf of the induced plants, as compared with water-sprayed plants. Systemic resistance was evident when a prior inoculation with each of the inducing fungi was administered 1, 3 or 6 days before the challenge inoculation with S. fuliginea. Increasing the inoculum concentration of A. cucumarina or C. fulvum enhanced the systemic protection and provided up to 71.6% or 80.0% reduction, respectively, in the number of colonies produced on upper leaves, relative to controls. Increasing the inoculum concentration of S. fuliginea used for challenge inoculation, increased the number of powdery mildew colonies produced on both induced and non-induced plants. Pre-treated plants, however, were still better protected than controls, indicating that the level of systemic protection was related to the S. fuliginea inoculum concentration. The induction of systemic resistance against powdery mildew by biotic agents, facilitates the development of a wide range of disease management tools.  相似文献   

2.
Powdery mildew, caused by Sphaerotheca fuliginea , was significantly controlled by a single spray of aqueous solutions (25 mm) containing various phosphates and potassium salts. Phosphates were suppressive when applied alone; however, treatments in combination with Tween-20 were more effective in causing the disappearance of powdery mildew pustules from diseased foliage. Efficiency of control, as expressed by the disappearance of 99% of pustules, was recorded 1 or 2 days after application of single sprays of phosphate and potassium salt solutions. Treatment was effective for up to 12 or 15 days, respectively, following application to small or large greenhouse-grown plants with established mildew infection. Treatments also markedly reduced (> 99%) the production of eonidia from colonies. A further application of these salts to the same plants resulted in the elimination of about 50% of mildew colonies present prior to the application. Further spray application inhibited disease development compared with water-sprayed plants, but did not reduce the number of existing lesions. Phosphate was more effective than the systemic fungicide pyrifenox and reduced established powdery mildew infection up to 11 days after application, but the converse was true when assessments were made after 15 days. These properties of phosphates and potassium salts make them appropriate for use as foliar fertilizers with a potential beneficial influence on disease control.  相似文献   

3.
Lithium chloride solutions (1 mM), supplied to cucumber plants via the root system, conferred protection against powdery mildew infection of the leaves by Sphaerotheca fuliginea. The development of infection structures was significantly inhibited by this treatment. Effective concentrations of the lithium salt increased the growth of shoots but resulted in some reduction of root growth, The incorporation of lithium by different parts of plants was assessed during a 20-day treatment period, The possible mode of action of lithium on this host-pathogen system is discussed.  相似文献   

4.
为了明确活性氧(reactive oxygen species,ROS)代谢在甜瓜抗病性诱导中的作用,以抗白粉病甜瓜品种Tam Dew和感病品种卡拉克赛幼苗为材料,通过盆栽试验研究了苯丙噻二唑(BTH)喷雾或白粉菌接种后甜瓜叶片超氧阴离子(O2.-)产生速率、过氧化氢(H2O2)含量及超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、苯丙氨酸解氨酶(PAL)活性的变化。BTH处理或白粉菌接种均可诱导甜瓜叶片SOD、PAL活性升高,抑制CAT活性,导致叶组织O2.-产生速率和H2O2含量增加,BTH喷雾+白粉菌接种比二者单独处理效果更好。结果表明,BTH处理后叶片O2.-产生速率提高和H2O2积累是甜瓜抗白粉病能力提高的重要机制,BTH通过诱导ROS代谢酶活性调节H2O2含量,且BTH诱导的甜瓜抗病性与品种的基础抗性有关。  相似文献   

5.
The new systemic fungicide N,N'-bis-(1-formamido-2,2,2-trichloroethyl)-piperazine (CELA W 524) was shown to display a moderate to distinct fungitoxic activity in vitro towards several pathogenic and non-pathogenic fungi. Depending on the inert ingredients present2, the available formulations proved to be either rather phytotoxic or virtually non-phytotoxic. Pre-infectional spraying with the non-phytotoxic formulation provided complete protection of barley, bean, cucumber, pea and tomato plants against barley powdery mildew, bean rust, cucumber powdery mildew and cucumber scab, pea powdery mildew and tomato leaf mould, respectively. some suppression of disease symptoms —although only at high concentrations of CELA W 524 — was observed in the case of leaf spot in pea plants. Upon post-infectional treatment disease control was less pronounced, although powdery mildew diseases and tomato leaf mould were effectively suppressed. When applied via the roots CELA W 524 proved to be systemically active, successfully protecting barley plants against powdery mildew, and cucumber plants against powdery mildew and cucumber scab.Samenvatting Het nieuwe systemische fungicide CELA W 524 (C. H. Boehringer Sohn, Ingelheim am Rhein, Duitsland) bleek een matige tot duidelijke fungitoxische werking in vitro te vertonen tegenover verschillende pathogene en niet-pathogene schimmels. Eén van de beschikbare formuleringen bleek vrij sterk fytotoxisch, de andere was nagenoeg niet fytotoxisch. Bespuiting vóór inoculatie met de niet-fytotoxische formulering resulteerde in volledige bescherming van gerst, bonen, komkommers, erwten en tomaten tegen respectievelijk gerstemeeldauw, boneroest, komkommermeeldauw en vruchtvuur, erwtemeeldauw en bladvlekkenziekte bij tomaat. Enige onderdrukking van ziektesymptomen trad ook op bij erwten, geïnoculeerd metAscochyta pisi, tenminste, wanneer hoge concentraties van CELA W 524 werden gebruikt. Bij bespuiting na inoculatie was het effect geringer, hoewel meeldauwziekten en bladvlekkenziekte bij tomaat toch doeltreffend bestreden werden. Toegediend via de wortels bleek CELA W 524 systemisch actief; het beschermde aldus gerst tegen meeldauw en komkommers tegen meeldauw en vruchtvuur.  相似文献   

6.
The non-protein amino acid BABA (DL-3-amino-n-butanoic acid, -aminobutyric acid) is reported here to induce local and systemic resistance against downy mildew in grape leaves. Leaf discs of susceptible cultivars placed on BABA solutions and inoculated with Plasmopara viticola on the counter surface produced brownish restricted lesions below the inoculation site (Hypersensitive-like response, HR) which failed to support fungal sporulation. Histochemical analyses of such HR lesions revealed the accumulation of lignin-like deposits in the host cells. In contrast, water-treated inoculated discs produced expanded chlorotic lesions with profuse sporulation in which no lignin accumulation was observed. Mock-inoculated BABA-treated leaf discs showed no HR or lignin accumulation. Concentrations as low as 25µg/ml (0.25mM) of BABA sufficed to prevent tissue colonization with the fungus. Five other isomers of aminobutyric acid, namely L-2 aminobutyric acid, 2-amino isobutyric acid, DL-2-aminobutyric acid (AABA), DL-3-amino isobutyric acid, and 4-aminobutyric acid (GABA) gave no protection against the downy mildew fungus. Of the two (R and S) enantiomers of BABA only the R form was active in producing HR, suggesting a specific stereostructure requirement for activity. BABA could stop fungal colonization even when applied post-infectionally to leaf discs. Resistance of BABA-pulse-loaded leaf discs persisted for more than 14 days. BABA provided systemic protection against the disease when applied via the root system or via the lower leaves of grape plants. Application of 14C-BABA to a single leaf of intact plants showed the accumulation of the 14C label in upper leaves (and root tips), suggesting sink-oriented transport.  相似文献   

7.
To clarify the relationship between the phylogeny and infectivity of isolates of Podosphaera fuliginea s. lat. (= Sphaerotheca fuliginea s. lat.) from cosmos and cucumber, more than 50 powdery mildew isolates from these two plants were subjected to nucleotide sequencing or PCR-RFLP analysis of the rDNA internal transcribed spacer (ITS) region and cross-inoculation tests. The isolates from both cosmos and cucumber are genetically monotypic, and there are six nucleotide substitutions in the rDNA ITS region between isolates from cosmos and cucumber. Cross-inoculation tests of these isolates revealed that isolates from cosmos are not pathogenic on cucumber. Although isolates from cucumber produced conidia on leaves of cosmos in the laboratory, the conidial density was much lower than that from isolates from cosmos. This result, as well as the fact that the cucumber strain was not isolated from cosmos in fields, suggests that isolates from cucumber do not infect cosmos in the field. Therefore, powdery mildews on cosmos and cucumber can be regarded to have become specialized for their hosts both genetically and pathogenically. The present study reconfirms the close relationship between phylogeny and infectivity of powdery mildew fungi. Host specialization may be a trigger that causes genetic divergence of powdery mildew fungi. Received 28 June 2000/ Accepted in revised form 4 September 2000  相似文献   

8.
The incidence of powdery mildew, caused bySphaerotheca fuliginea (Schlecht. Fr.) Polacci, in squash plants, was suppressed in the field to 50–60% of that in untreated control plants by weekly sprays with whitewash (Loven or Yalbin) or clay. Loven or Yalbin sprays resulted in significant reductions in disease level, more on the adaxial (59–65%) than on the abaxial (38–52%) surface of leaves, and more on young (53–59%) than on old (12–18%) leaves. The addition of 0.1% Dabak (a commercial sticker) to the whitewashes significantly increased their efficiency (22% above that of the controls), the degree of protection being associated with whitewash concentration. Squash leaves were protected from powdery mildew also by weekly sprays of the antitranspirant Vapor Gard, to a level comparable with that achieved by a whitewash plus sticker. However, the protection levels achieved with whitewashes, clays and antitranspirant were lower than with a fungicide (propiconazole). Experiments conducted under controlled conditions resulted in higher rates of escape from infection and a lower rate of hyphal and conidial development on plants and tissues following whitewash, clay and antitranspirant treatments.  相似文献   

9.
四氟醚唑对黄瓜的安全性及其对黄瓜白粉病的防治效果   总被引:5,自引:2,他引:3  
为明确四氟醚唑对黄瓜植株的安全性,采用浸种及茎叶喷雾处理的方法测定其对不同生长时期黄瓜植株的影响,采用子叶保湿培养法测定白粉病菌对其敏感性,并在田间进行防治白粉病的药效试验,综合评价了四氟醚唑对黄瓜白粉病的效果。浸种处理后,黄瓜子叶上白粉病发病率明显降低,对黄瓜株高和根长的抑制率、茎周增长率及叶绿素含量增加率与己唑醇相比均较低;发芽期及幼苗期的黄瓜植株使用四氟醚唑处理,新生节间均出现轻微的抑制伸长现象;4%四氟醚唑水乳剂对黄瓜白粉病菌的EC50为0.8146mg/L,敏感毒力高于50%醚菌酯水分散粒剂;田间间隔期10天喷雾,在末次药后7天对黄瓜白粉病的防治效果为76.02%~85.77%,与5%己唑醇水乳剂防效相当,明显高于50%醚菌酯水分散粒剂的防效。表明四氟醚唑对黄瓜生长安全且用药间隔期长,是防治白粉病的高效轮换药剂。  相似文献   

10.
黄瓜白粉病菌接种及对杀菌剂敏感性测定方法   总被引:5,自引:4,他引:5  
建立了孢子悬浮液接种黄瓜子叶测定黄瓜白粉病菌杀菌剂敏感性的简便方法。比较了白粉病菌分生孢子悬浮液涂抹法和喷雾法接种黄瓜幼苗子叶的效果,结果表明,涂抹法发病率高,均匀度更好;测定了接菌后不同时间施药,白粉病菌对己唑醇、腈菌唑、三唑酮、甲基硫菌灵和百菌清等5种杀菌剂的敏感性,结果表明,接菌后96h施药较为敏感,测得的EC50较小。最后确定接种及毒力测定方法为:接种时白粉病菌分生孢子悬浮液使用十二烷基硫酸钠水溶液分散悬浮,孢子浓度为15×10倍显微镜下每视野30~40个,接种后96h施药,发病后直接利用病斑数来计算毒力测定结果。该方法可用于黄瓜白粉病菌抗药性监测和对杀菌剂敏感性测定。  相似文献   

11.
One spray of 0.1 M aqueous solutions of NPK fertilizers on the upper sides of maize leaves 1, 2, and 3, 2–4 h prior to inoculation, induced systemic resistance (ISR) against northern leaf blight (NLB) caused byExserohilum turcicum andPuccinia sorghi which were developed on leaves 4, 5, 6, and 7. ISR was expressed as a reduction in the number and area of lesions ofE. turcicum and in the number of sporulating or non-sporulating pustules ofP. sorghi on leaves 4, 5, 6, and 7. The reduction in the number of NLB lesions ranged from 51% (KH2PO4) to 69% (K2HPO4) and their size reduction ranged from 73% (KNO3) to 91% (K2HPO4) as compared with water prayed plants. The reduction in the number of pustules ofP. sorghi ranged from 66 to 77%. Fertilizers consisting of various combinations of N, P and K in every case induce similar levels of protection in either host-pathogen system. The induced protection was evident regardless of the leaf position or the rate of NPK accumulation in the upper protected leaves. High fresh weight was detected in the induced plants which expressed the greatest induced protection against NLB and common rast. The possible dual use of NPK fertilizers — to supply nutrients to plants foliarly and at the same time to activate the mechanism(s) for induction of systemic protection toP. sorghi andE. turcicum in maize — is discussed.Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel, No. 1315-E, 1995 series.  相似文献   

12.
Two cucumber ( Cucumis sativus ) cultivars differing in their resistance to powdery mildew, Ningfeng No. 3 (susceptible) and Jinchun No. 4 (resistant), were used to study the effects of foliar- and root-applied silicon on resistance to infection by Podosphaera xanthii (syn. Sphaerotheca fuliginea ) and the production of pathogenesis-related proteins (PRs). The results indicated that inoculation with P. xanthii significantly suppressed subsequent infection by powdery mildew compared with noninoculation, regardless of Si application. Root-applied Si significantly suppressed powdery mildew, the disease index being lower in Si-supplied than in Si-deprived plants, regardless of inoculation treatment. The resistant cultivar had a more constant lower disease index than the susceptible cultivar, irrespective of inoculation or Si treatment. Moreover, with root-applied Si, activities of PRs (for example peroxidase, polyphenoloxidase and chitinase) were significantly enhanced in inoculated lower leaves or noninoculated upper leaves in inoculated plants of both cultivars. Root-applied Si significantly decreased the activity of phenylalanine ammonia-lyase in inoculated leaves, but increased it in noninoculated upper leaves. However, Si treatment failed to change significantly the activity of PRs in plants without fungal attack. Compared to the control (no Si), foliar-applied Si had no effects either on the suppression of subsequent infection by P. xanthii or on the activity of PRs, irrespective of inoculation. Based on the findings in this study and previous reports, it was concluded that foliar-applied Si can effectively control infections by P. xanthii only via the physical barrier of Si deposited on leaf surfaces, and/or osmotic effect of the silicate applied, but cannot enhance systemic acquired resistance induced by inoculation, while continuously root-applied Si can enhance defence resistance in response to infection by P. xanthii in cucumber.  相似文献   

13.
Leaves of apple (Malus domestica cv. Elstar) were infected with a cloned isolate of the apple scab Venturia inaequalis. The intercellular washing fluid (IWF) of these plants was collected and the variation in the composition of proteins in the IWF was analysed by SDS-PAGE and two-dimensional gel electrophoresis during and after the infection with V. inaequalis, the causal agent of apple scab. The subsequent analysis of induced proteins by electron spray ionization quadrupole time of flight mass spectroscopy revealed the presence of -1,3-glucanase, chitinase, thaumatin-like protein and a cysteine-like protease in M. domestica leaves infected by V. inaequalis. These results were confirmed by immunoblotting with antibodies against some of these proteins. Moreover, a non-specific lipid transfer protein was identified in uninfected leaves: the amount declined to a non-detectable level within the first week after infection by V. inaequalis. The analysis of the IWF of M. domestica cv. Remo, bearing resistances to apple scab, powdery mildew and fire blight, showed a protein pattern comparable to that of the IWF from V. inaequalis infected leaves from cultivar Elstar indicating the constitutive production at least of some of the pathogenesis-related proteins in the resistant cultivar.  相似文献   

14.
The primary evaluation of ten fungicides for the control of cucumber powdery mildew (Sphaerotheca fuliginea), tomato leaf mould (Cladosporium fulvum) and tomato grey mould (Botrytis cinerea) indicated that nine of them were systemically active against one or more of the pathogens when applied as soil drenches. Benomyl, thiophanate, thiophanate-methyl, thiabendazole and Cela W52A showed activity against all three diseases, but dimethirimol, triarimol and dodemorph were more specific and mainly active against cucumber powdery mildew. An in vitro bioassay generally indicated that fungitoxicity was not translocated from sprayed to unsprayed leaves, and though toxicity to B. cinerea, following soil drenches of benomyl, thiophanate and thiophanate-methyl, was detected by bioassay in leaf sap and calyces it was not detected in fruit. Furthermore, extended evaluation of benomyl for the control of grey mould on cropping tomotoes showed that in the presence of abundant B. cinerea inoculum, benomyl soil drench treatment effectively controlled flower and leaf infection but not fruit ghost-spotting.  相似文献   

15.
白粉病是黄瓜生产中发生普遍,危害严重的主要病害之一。pm5.1和PM5.2是黄瓜上的2个白粉病抗性位点,本文对7份不同抗病基因型的黄瓜自交系进行了黄瓜白粉病抗性鉴定,并开展了黄瓜白粉病菌侵染过程的研究,对侵染后12、24、72 h的萌发率、菌丝形成率及菌落形成率等进行了分析。结果表明,当基因型为PM5.1PM5.1 pm5.2pm5.2时,黄瓜病情指数最高,表现为高感白粉病;当基因型为PM5.1PM5.1PM5.2 PM5.2和pm5.1pm5.1pm5.2pm5.2时,表现为中感白粉病;当基因型为pm5.1pm5.1PM5.2PM5.2时黄瓜自交系病情指数最低,表现为抗白粉病。分生孢子在抗、感黄瓜自交系植株叶片上均能萌发,但只能在感病黄瓜材料上完成整个无性生长周期,产生分生孢子。此外,黄瓜白粉病菌分生孢子在感病材料上的萌发率、菌丝形成率及菌落形成率均高于抗病材料。  相似文献   

16.
ROPs (also called RACs) are RHO-like monomeric G-proteins of plants, well-known as molecular switches in plant signal transduction processes, which are involved in plant development and a variety of biotic and abiotic stress responses. The barley (Hordeum vulgare) ROPs RACB, RAC1 and RAC3 have been shown to be involved in cellular growth, polarity and in susceptibility to the biotrophic barley powdery mildew fungus Blumeria graminis f.sp. hordei. We produced transgenic tobacco (Nicotiana tabacum) plants expressing constitutively activated (CA) mutants of the barley ROPs RACB and RAC3 to monitor the impact of heterologous ROP expression on cell polarity and disease susceptibility of tobacco. CA HvROPs influenced leaf texture, disturbed root hair polarity and induced cell expansion in tobacco. Both barley ROPs induced super-susceptibility to the compatible powdery mildew fungus Golovinomyces cichoracearum but only CA HvRAC3 induced super-susceptibility to the bacterial leaf pathogen Pseudomonas syringae pv. tabaci. Data suggest involvements of ROPs in tobacco cell expansion, polar growth and in response to bacterial and fungal leaf pathogens.  相似文献   

17.
Downy mildew of lettuce (Bremia lactucae) is a serious disease. An alternative to chemicals is the application of disease resistance inducers. The aim of this study was to test whether DL--amino butyric acid (BABA) and Phytogard® (K2HPO3) could induce resistance in downy mildew susceptible plants. Aqueous solutions of BABA (0, 10, 20, 30, 50, 80, 100mM) and Phytogard® (0.0, 5.8, 29.0, 40.6, 58.0 and 87.0ppm) were sprayed on seven-day-old seedlings 0, 3, 7 and 15 days before or 1–3 days after inoculation with B. lactucae. Results obtained showed that Phytogard®- and BABA-induced resistance was dose-dependent. At 40.6ppm for Phytogard® and 10mM for BABA, complete protection was obtained. Both compounds had a curative effect and the induced resistance lasted for at least 15 days. It was also shown that both compounds induced systemic resistance in lettuce against downy mildew. Phytogard® at 40.6ppm completely inhibited spore germination while BABA at 20mM did not. Pathogenesis related (PR) protein analysis showed that BABA induced weak accumulation of PR-2, but not PR-1, PR-5 and PR-9. Phytogard® induced none of these proteins. The use of these two compounds to protect lettuce from B. lactucae is discussed.  相似文献   

18.
利用28S rDNA D1/D2区和ITS rDNA序列鉴定甜瓜白粉病病原菌   总被引:2,自引:2,他引:0  
为了明确宁夏干旱带压砂甜瓜白粉病病原菌,从病原菌分生孢子中提取DNA,PCR扩增ITSrDNA和28S rDNA D1/D2区段,测序后进行BLAST比对.结果表明,病原菌的ITS rDNA和28SrDNA D1/D2序列与菜豆叉丝单囊壳白粉菌Podosphaera phaseoli、凤仙花又丝单囊壳白粉菌P.bal-saminae、菊科叉丝单囊壳白粉菌P.fwca、苍耳单囊壳白粉菌P.xanthii、瓜类单囊壳白粉菌P.fuligi-nea等叉丝单囊壳属Podosphaera的多个种的ITS rDNA和28S rDNA D1/D2序列之间相似度均大于99%,鉴定甜瓜白粉病病原菌为叉丝单囊壳属Podosphaera.  相似文献   

19.
Three commercial formulations of strobilurins, viz., azoxystrobin, kresoxim-methyl, and trifloxystrobin were evaluated for their efficacy against pearl millet downy mildew disease caused by Sclerospora graminicola. In vitro studies revealed inhibition of S. graminicola sporulation, zoospore release, and zoospore motility at 0.1-2 μg ml−1 of all the three fungicides. The fungicides were evaluated for phytotoxic effects on seed quality parameters and for their effectiveness against downy mildew disease by treating pearl millet by: (1) seed dressing, (2) seed dressing followed by foliar spray, and (3) also by foliar spray alone. The highest non-phytotoxic concentrations of 5, 10, and 10 μg ml−1 for azoxystrobin, trifloxystrobin, and kresoxim-methyl, respectively, were selected for further studies. Under greenhouse conditions, these fungicides showed varying degrees of protection against downy mildew disease. Among the three fungicides, azoxystrobin proved to be the best by offering disease protection of 66%. Further, seed treatment along with foliar application of these fungicides to diseased plants showed enhanced protection against the disease to 93, 82, and 62% in treatments of azoxystrobin, kresoxim-methyl and trifloxystrobin respectively. Foliar spray alone provided significant increase in disease protection levels of 91, 79, and 59% in treatments of azoxystrobin, kresoxim-methyl, and trifloxystrobin, respectively. Disease curative activity of azoxystrobin was higher compared to trifloxystrobin and kresoxim-methyl. Tested fungicides showed weaker translaminar activity, as the disease inhibition was marginal when applied on adaxial leaf surface. Partial systemic activity of azoxystrobin was evident by root uptake, while trifloxystrobin and kresoxim-methyl showed lack of systemic action in pearl millet. A trend in protection against downy mildew disease similar to greenhouse results was evident in the field trials. Grain yield was significantly increased in all strobilurin fungicide treatments over control and maximum increase in yield of 1673 kg ha−1 was observed in combination treatments of seed treatment and foliar spray with azoxystrobin.  相似文献   

20.
Since 2001, several isolates of Blumeria graminis, the causal agent of cereal powdery mildew, maintained on detached leaves at the John Innes Centre, Norwich, UK, have spontaneously become infected with an unknown filamentous fungus whose mycelia have quickly overgrown the powdery mildew colonies and destroyed them completely. A total of five isolates of the contaminant were obtained and identified as Paecilomyces farinosus based on morphological characteristics and rDNA ITS sequence data. To determine whether these P. farinosus isolates can be considered as biocontrol agents (BCAs) of powdery mildews, we studied the interactions between P. farinosus and the following four powdery mildew species: B. graminis f.sp. hordei infecting barley, Oidium neolycopersici infecting tomato, Golovinomyces orontii infecting tobacco and Podosphaera fusca infecting cucumber. The powdery mildew colonies of all these four powdery mildew species were quickly destroyed by P. farinosus in leaf cultures but neither conidial suspensions nor cell-free culture filtrates of P. farinosus isolates could suppress the spread of powdery mildew infections on diseased barley, tomato, tobacco or cucumber plants in the greenhouse. It is concluded that P. farinosus cannot be considered as a promising BCA of powdery mildew infections although it can destroy powdery mildew colonies in detached leaf cultures and can be a menace during the maintenance of such cultures of cereal, apple, cucurbit and tomato powdery mildew isolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号