首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 228 毫秒
1.
Seed dormancy contributes to species persistence in unpredictable environments and is a key process to be taken into account in weed dynamics models. As the level of seed dormancy, photosensitivity and the dates of dormancy induction and release are difficult to measure, our objective was to relate weed seed dormancy with morphological, chemical or physiological seed traits and with expert knowledge. Dormancy of four species was studied experimentally during a 2‐year seed burial experiment. Experiments were supplemented with data from the literature to increase the number of species analysed, resulting in a data set of 29 species. Proportions of non–dormant seeds were higher for elongated than spherical seeds, even when accounting for phylogenetic relatedness between species. Elongated seeds, which tend to remain on the soil surface in undisturbed habitats, may have been selected for lack of dormancy and immediate germination to limit mortality due to predation. Dormancy increased with seed coat thickness, which can act as a chemical and physical barrier to germination, while no relation was found with seed lipid or protein content. No correlation was found between photosensitivity parameters and any of the species traits analysed. Variations in dormancy dates (induction and release) were highly correlated with average field emergence season estimated from expert knowledge. The observed correlations suggest that the level of dormancy results both from direct and from indirect effects of traits being involved in trade‐offs together with seed mortality.  相似文献   

2.
Temperature is a key factor for the living organisms on earth. It influences weed management practices, either directly or indirectly. Field experiments were conducted to determine the effect of temperature on the postdispersal seed predation of four important weed species (Cuscuta compestris, Stellaria media, Taraxacum officinale and Veronica persica) in two lucerne fields in Mashhad and Chenaran, north‐eastern Iran. These two cities have the same climate: temperate and cold alpine but the temperature varies between them. Wire mesh cages were used to determine the relative importance of birds in predation and pitfall traps were used to detect the species and the activity density of invertebrate predators. The results showed that the predation preference of different weed species was significantly different between and within fields. Seed predation fluctuated widely throughout the sampling periods, matching the periodic forage harvest and regrowth cycle of lucerne. Despite the level of seed predation fluctuating, it declined toward the last sampling periods. Using wire mesh exclusion cages showed no significant effect of birds on weed seed predation in both fields. Ants, crickets and carabid beetles were the invertebrate seed predators that were caught in the pitfall traps. There were significant correlations between the mean temperature and predator activity densities and also between the predated seeds and the mean air temperature in both locations. The results of this study indicate the significant effect of temperature on postdispersal weed seed predation. Therefore, with respect to climate change and increasing global warming, it would be possible to focus on postdispersal seed predation in weed management in the future.  相似文献   

3.
The seed predation of woolly cupgrass (Eriochloa villosa), an invasive weed of East‐Asian origin, was compared to that of yellow foxtail (Setaria pumila), an established and widespread weed, along a field border in Canada. The seeds of both species were glued to sandpaper cards and their removal in field conditions was recorded from July to September during the 3 years of 2009, 2010 and 2011. Predator exclusion cages allowed the evaluation of seed loss to be attributed to invertebrates, vertebrates and total seed loss due to predation for both species. Pitfall traps were installed and collected once in 2010 and during all the seed sampling dates in 2011 in order to evaluate predatory pressure from ground beetles and crickets. The average amount of seed loss that could be attributed to invertebrates was higher for S. pumila than for E. villosa, while the amount of seed loss that could be attributed to vertebrates was higher for E. villosa than for S. pumila in 2009 and 2010. The level of S. pumila seed loss to invertebrates was correlated with the sum of crickets (Gryllus pennsylvanicus) and beetles (Harpalus spp. and Ophonus rufibarbis) trapped during the 2011 season. During the same period, correlations between E. villosa seed loss to invertebrates and trapped insects were not observed. Reduced postdispersal seed predation by invertebrates could increase the local fall survival of the unburied seeds of invasive E. villosa populations, compared to other naturalized, smaller‐seeded weedy grasses.  相似文献   

4.
Post-dispersal seed predation of non-target weeds in arable crops   总被引:2,自引:0,他引:2  
Field experiments were conducted to quantify the natural levels of post-dispersal seed predation of arable weed species in spring barley and to identify the main groups of seed predators. Four arable weed species were investigated that were of high biodiversity value, yet of low to moderate competitive ability with the crop. These were Chenopodium album, Sinapis arvensis, Stellaria media and Polygonum aviculare. Exclusion treatments were used to allow selective access to dishes of seeds by different predator groups. Seed predation was highest early in the season, followed by a gradual decline in predation over the summer for all species. All species were taken by invertebrates. The activity of two phytophagous carabid genera showed significant correlations with seed predation levels. However, in general carabid activity was not related to seed predation and this is discussed in terms of the mainly polyphagous nature of many Carabid species that utilized the seed resource early in the season, but then switched to carnivory as prey populations increased. The potential relevance of post-dispersal seed predation to the development of weed management systems that maximize biological control through conservation and optimize herbicide use, is discussed.  相似文献   

5.
The ecological consequences of seed size variation have been studied extensively in plants. Curiously, little attention has been paid to the qualitative and quantitative variation of the seed‐stored molecules and on their ecological significance. Here, we analysed the oil content and oil composition of ca. 200 weed seed species from agricultural fields in France based on single seed accessions, concentrating on interspecies differences and ignoring within‐species variation. The relationships between seed weight, oil %, fatty acids (FAs) and the energetic value of the seed and its antioxidant properties were also investigated. The antioxidant activity could contribute to protect the oily seed reserves from alteration over time. Among the species analysed, we found a considerable quantitative (oil%) and qualitative variation of FAs stored in the seeds. Such variation was largely related to the plant family of the different species, but intrafamily variation was also found. Heavier seeds contained less oil on a per gram basis than lighter seeds, suggesting a trade‐off between seed weight and oil ratio in the seed and that oil storage strategy depends on seed size. Moreover, oily seeds contained more polyunsaturated FAs. However, contrary to our hypothesis, we did not found a higher antioxidant capability in oily seed extracts than in non‐oily seeds, nor to the quantitative or to the qualitative variation of FAs in the seeds. Considering the role of these important trait variations on weed ecological strategies, such as germination period, seed predation rate and competition–colonisation trade‐off, could improve the sustainable management of weed communities.  相似文献   

6.
Weed management requires a better understanding of the dynamics of the weed seedbank, which is a primary source of weeds in a field. Seeds reaching the ground after seed rain replenish the seedbank and therefore contribute to future weed infestations. Our investigation is based on the hypothesis that a permanent vegetation cover, such as a grassland, can prevent weed seeds from reaching the ground. Therefore, we developed an innovative experimental device to simulate in controlled conditions the seed rain of 12 weed species (Capsella bursa‐pastoris, Conyza canadensis, Myosotis arvensis, Papaver rhoeas, Poa annua, Polygonum aviculare, Ranunculus sp., Rumex obtusifolius, Sonchus asper, Stellaria media, Taraxacum officinale and Veronica persicaria). We quantified the interception of weed seeds by a grass cover. Grass cover height, seed size and seed appendage (e.g. pappus, wing or awn) increased seed interception, in contrast to seed weight and shape index. From these results, we established a linear model to predict weed seed interception by a grass cover as a function of their seed trait values. The relationship between the predicted interception and weed community dynamics observed in grasslands was negative for some species, indicating that other processes may be involved depending on weed species. The weed seed interception model will be incorporated into an existing model of weed population dynamics to simulate the impact of grassland insertion into arable crop rotations.  相似文献   

7.
Field experiments were made in 1998 and 1999 to determine the influence of tillage and soyabean (Glycine max) row width on predispersal weed seed predation in Amaranthus retroflexus L. (redroot pigweed) and Chenopodium album L. (common lambsquarters). Soyabean was planted in wide (76 cm) and narrow (19 cm) rows with conventional or conservation tillage. Additional control plots without soyabean were also established. The two objectives were to determine (1) whether predispersal seed predation occurs in A. retroflexus or C. album, and (2) whether disturbance (soil tillage) or microclimate (planting pattern) influence predation level. Mean rates of seed predation were 26% and 4% in A. retroflexus and C. album, respectively. Although these levels were low at the population level, individual plants of both species had predation levels ranging from 0% to 80%, however, very few individuals of C. album had levels of predation above 10%. Differences among tillage and row width treatments occurred for A. retroflexus, but not for C. album. Amaranthus retroflexus and C. album growing within the soyabean crop received less light than those in the no‐crop plots, and produced less above‐ground biomass, smaller terminal inflorescences, and fewer seeds per inflorescence. Plant height, terminal inflorescence weight, and total seeds were correlated with predation in both weed species.  相似文献   

8.
Correlation between the soil seed bank and weed populations in maize fields   总被引:1,自引:0,他引:1  
Annual weed populations establish every year from persistent seed banks in the soil. This 3 year study investigated the relationship between the number of weed seeds in the soil seed bank and the resultant populations of major broadleaf and grass weeds in 30 maize fields. After planting the crop, 1 m2 areas were protected from the pre-emergence herbicide application. Soil samples were collected soon after spraying to a depth of 100 mm and the weed seeds therein were enumerated. The emerged weed seedlings in the field sampling areas were counted over the following 8 weeks. Up to 67 broadleaf species and five grass weeds were identified, although not all were found at every site and some were specific to a region or soil type. For the most abundant weeds in the field plots, on average 2.1–8.2% of the seeds of the broadleaf species and 6.2–11.9% of the seeds of the grass weeds in the soil seed bank emerged in any one year, depending on the species. Overall, the results showed a strong linear relationship between the seed numbers in the soil and the seedling numbers in the field for all the grasses and for most broadleaf weeds. For some species, like Trifolium repens , only a weak relationship was observed. In the case of Chenopodium album , which had the largest seed bank, there was evidence of asymptotic behavior, with seedling emergence leveling off at high seed numbers. An estimate of the soil seed bank combined with knowledge of the germination and behavior of specific weed species would thus have good potential for predicting future weed infestations in maize fields.  相似文献   

9.
To improve understanding of over-winter weed seed predation in arable fields, we used data from winter exclosure trials to determine the amount of predation and the influence of crop habitats on predation of Abutilon theophrasti and Setaria faberi seed in 2-year (maize/soyabean) and 4-year (maize/soyabean/small grain+lucerne/lucerne) crop rotation systems between 2005 and 2008. Crop habitat influenced seed predation, and had similar impacts on the two weed species. Mean A. theophrasti predation ranged from 31% in the 2-year soyabean habitat to 99% in the 4-year lucerne habitat. Mean S. faberi predation ranged from 31% in the 2-year soyabean habitat to 97% in the 4-year lucerne habitat. Results suggest that a combination or interaction of cover and substrate may have affected crop habitat preference by seed predators. Future research should further examine the influence of physical habitat on seed predation to determine characteristics of cropping systems that encourage predation, particularly during over-winter periods, so as to routinely incorporate seed predators into long-term weed management strategies.  相似文献   

10.
A better understanding of weed seed production is a key element for any long‐term management allowing some weeds to shed seeds. The challenge with measuring seed production in weeds is the large effort required in terms of time and labour. For the weed species Echinochloa crus‐galli, it was tested whether the number of seeds per panicle dry weight or per panicle length can be used to estimate seed production. Experiments were conducted in three maize fields in north‐eastern Germany. The effect of factors that could influence this relationship, such as the time of seedling emergence, the density of E. crus‐galli, the control intensity of other weeds, seed predation and field, was included. A few days before maize harvest, all panicles were removed and weighed, panicle length was measured, and for a subsample of 178 panicles, the number of seeds was counted manually. Panicle dry weight predicted the number of seeds per panicle better (R2 = 0.92) than did panicle length (R2 = 0.69). The other factors except for ‘field’ and ‘seed predation’ had no effect on these relationships. The relationships between seed number and panicle dry weight found in this study closely resembled those reported in an earlier study. Based on our results, we conclude that both plant traits are appropriate for the estimatation of seed production, depending on required level of precision and availablilty of resources for the evaluation of sustainable weed management strategies.  相似文献   

11.
Weed seed predation is an ecosystem service, influencing weed population dynamics. The impact of weed seed predation on weed population dynamics depends on how predators respond to seed patches at the field scale. Seed predation will be most effective if the proportion of seeds predated increases with increasing size and seed density of patches. Density‐dependent rodent seed predation was measured by varying seed density and patch size in four irrigated conventionally managed cereal fields in north eastern Spain. Artificial weed seed patches were created by applying a range of Lolium multiflorum seed densities from 0 to 7500 seeds m?2 in 225 m2 patches (2008) or in patches that varied in size from 1 to 9 m2 (2009). Seed predation was estimated using seed cards and seed frames. The granivorous rodents Mus spretus and Apodemus sylvaticus caused high seed predation rates (92%) in three fields, whereas in a fourth field, it was lower (47%). Rodents responded in an inversely density‐dependent manner, but this had little biological meaning as even in patches seeded with the highest density, the input to the soil seedbank was reduced by 88%. For the period of time this experiment lasted, hardly any new seeds would have entered the seedbank.  相似文献   

12.
R H LI    & S QIANG 《Weed Research》2009,49(4):417-427
The diversity and composition of floating weed seed communities were surveyed in 27 sites across the main rice-growing regions in China with the aim of better understanding weed seed dispersal via irrigation water. Seed of 74 species, belonging to 20 families, were identified from floating matter on the water surface in lowland rice fields. Thirty-five species from three families: Poaceae (15), Asteraceae (11), and Polygonaceae (9), accounted for 47% of all species identified. Species with seed maturing in the summer accounted for 64% of the weed seed and their mean relative abundance was 0.74. Species richness, Shannon–Wiener index and Pielou evenness index were significantly different among the floating weed seed communities. The diversity of weed seed communities in the Yangtze river valley was higher than that in other sites, and some sites were dominated by only a few weed species, such as Beckmannia syzigachne , Alopecurus aequalis , A. japonicus , and Polypogon fugax. At all sites, the dominant weed seeds reflected the dominant weed species in the previous crop. The 27 sample sites of weed seed communities can be clustered into two groups on the basis of previous crop, either lowland rice or sites with previous crops of winter fallow, winter wheat or oilseed rape. Canonical correspondence analysis (CCA) revealed that irrigation frequency, previous crop, and latitude, but not soil type or longitude, significantly affected species composition. The numbers of floating weed seed species were high in lowland rice fields; composition was affected by previous crops and irrigation frequency. Filtering irrigation water and collecting and removing floating weed seeds from the water surface could be integrated into weed management practices to control weeds in lowland rice fields.  相似文献   

13.
Seed germination profoundly impacts plant community composition within the plant life cycle. Snow is an important source of water for seed germination in the temperate deserts of Central Asia. Understanding how seed germination responds to variations in snow cover in relation to seed traits and plant ecological characteristics can help predict plant community sustainability and stability in Central Asia under a scenario climate change. This study investigated the seed germination of 35 plant species common to the Gurbantunggut Desert in Central Asia under the three snow treatments: (1) snow addition; (2) ambient snow; and (3) snow removal. Two-way analysis of variance (ANOVA) tests were performed to assess interactions among the impacts of snow treatments, seed traits and plant ecological characteristics on seed germination. Phylogenetic generalized least-squares (PGLS) model was used to test the relationships between seed traits and seed germination. The results demonstrated that snow variations had no significant impacts on seed germination overall. Seed germination under the snow addition treatment was similar with that under the ambient snow treatment, irrespective of seed traits and plant ecological characteristics. Snow removal only had negative impacts on seed germination for certain groups of seed traits and plant ecological characteristics. Seed mass positively affected seed germination, showing a linear increase of arcsin square root-transformed seed germination with log-transformed seed mass. Seed shape also profoundly impacted seed germination, with a higher germination percentage for elongated and flat seeds. Seed germination differed under different plant life forms, with semi-shrub species showing a significantly higher germination percentage. Most importantly, although snow treatments, seed traits and plant ecological characteristics had no interactive effects on seed germination overall, some negative impacts from the snow removal treatment were detected when seeds were categorized on the basis of seed mass and shape. This result suggests that variations of snow cover may change plant community composition in this temperate desert due to their impacts on seed germination.  相似文献   

14.
Weed seeds present an agronomic threat, but are also an important food resource for wildlife in winter. Weed seed densities on the soil surface in winter were examined from 1999 to 2002 in 105 fields on three different farms in UK. The effect of the preceding crop, cultivation, position within the field and the application of seed for birds (bird seed) on surface seed abundance and species composition was tested. Six or fewer species comprised c. 80% of the weed seeds. By January of each study year, the densities of seeds important for farmland birds (key seeds) were 73% or 87% lower compared with early winter on two of the farms, but were stable on the third where seeds were incorporated through cultivation. At the edge and mid‐field, seed densities only exceeded 400 m?2 in 17%, 10% and 12% of fields for total, key and dicotyledonous seeds respectively. The preceding crop only affected seed densities at one site; stubbles of winter barley had fewer seeds compared with winter wheat or spring barley. Seed densities varied between the edge and mid‐field, but trends were inconsistent between sites. The density of the larger seeds (Atriplex patula, Viola arvensis, Polygonum aviculare and Chenopodium album) were reduced in fields receiving bird seed. The objectives of weed control and conservation may not be mutually exclusive because seed return was most reduced where the ground remained uncultivated through the winter, yet this also provided the best foraging opportunities for surface feeding seed predators.  相似文献   

15.
Endozoochory is known as an important mechanism for the spread of weeds. We carried out experiments to assess the fate of seeds of several weed species (Convolvulus arvensis, Cuscuta campestris, Rumex crispus, Hordeum spontaneum and Sorghum halepense) after passing through the gut of sheep and goat. Eighteen animals of both sheep and goat received diet mixed with seeds of the weed species or control with only wheat bran (five weed species + control × three replications). Results showed that a higher proportion of seeds were missing after passage through the sheep gut than in goats. In goats, a greater proportion of seeds were dead after passage, but the number of seeds collected from dung was also greater. Weed species differed, with the highest seed recovery and viability in Cuscuta campestris. Based on time of seed passages through the animal gut estimated for the different weed species, we recommend that sheep should be kept in a corral for 96 hr to minimise seed transportation via their faeces. For goats, if R. crispus and C. arvensis seeds could be excluded from the diet, then maintaining them for 96 hr in an animal stall would ensure little seed transportation via dung, but we found R. crispus and C. arvensis seeds to be present and viable in goat dung even 120 hr after feeding. Very large numbers of viable seeds can be found in goat and sheep dung, so the use of rotted manure is highly recommended to avoid transportation of viable seeds via manure fertilisers.  相似文献   

16.
[目的]研究归纳进口大豆杂草籽截获规律,提高口岸杂草籽截获的目的性.[方法]根据杂草籽日常截获及鉴定情况,结合山东口岸截获的实际情况进行分析总结.[结果]口岸截获杂草籽主要种类数是88种,主要集中于禾本科、菊科、旋花科、豆科、蓼科、锦葵科、苋科、大戟科、藜科9个科;检出检疫性杂草籽,共计48种,主要集中在菊科、禾本科、茄科、苋科;截获较多的有齿裂大戟、假高粱、豚草、刺蒺藜草、三裂叶豚草、苍耳属(非中国种)6种杂草籽.[结论]研究结果对口岸进口大豆的检疫截获及防控提供了理论和数据支持.  相似文献   

17.
Seed dormancy and persistence in the soil seedbank play a key role in timing of germination and seedling emergence of weeds; thus, knowledge of these traits is required for effective weed management. We investigated seed dormancy and seed persistence on/in soil of Chenopodium hybridum, an annual invasive weed in north‐western China. Fresh seeds are physiologically dormant. Sulphuric acid scarification, mechanical scarification and cold stratification significantly increased germination percentages, whereas dry storage and treatments with plant growth regulators or nitrate had no effect. Dormancy was alleviated by piercing the seed coat but not the pericarp. Pre‐treatment of seeds collected in 2012 and 2013 with sulphuric acid for 30 min increased germination from 0% to 66% and 62% respectively. Effect of cold stratification on seed germination varied with soil moisture content (MC) and duration of treatment; seeds stratified in soil with 12% MC for 2 months germinated to 39%. Burial duration, burial depth and their interaction had significant effects on seed dormancy and seed viability. Dormancy in fresh seeds was released from October to February, and seeds re‐entered dormancy in April. Seed viability decreased with time for seeds on the soil surface and for those buried at a depth of 5 cm, and 39% and 10%, respectively, were viable after 22 months. Thus, C. hybridum can form at least a short‐lived persistent soil seedbank.  相似文献   

18.
Summary The effectiveness of crop competition for better weed control and reducing herbicide rates was determined for Avena ludoviciana and Phalaris paradoxa . Four experiments, previously broadcast with seeds of the two weeds in separate plots, were sown with three wheat densities, and emerged weeds were treated with four herbicide doses (0–100% of recommended rate). The measured crop and weed traits were first analysed across experiments for treatment effects. Grain yield and weed seed production data were then analysed using cubic smoothing splines to model the response surfaces. Although herbicide rate for both weeds and crop density for P. paradoxa had significant linear effects on yield, there was a significant non-linearity of the response surface. Similarly, herbicide rate and crop density had significant linear effects on weed seed production, and there was significant non-linearity of the response surface that differed for the weed species. Maximum crop yield and reduction in seed production of P. paradoxa was achieved with approximately 80 wheat plants m−2 and weeds treated with 100% herbicide rate. For A. ludoviciana , this was 130 wheat plants m−2 applied with 75% herbicide rate. Alternatively, these benefits were achieved by increasing crop density to 150 plants m−2 applied with 50% herbicide rate. At high crop density, application of the 100% herbicide rate tended to reduce yield, particularly with the A. ludoviciana herbicide, and this impacted adversely on the suppression of weed seed production. Thus, more competitive wheat crops have the potential for improving weed control and reducing herbicide rates.  相似文献   

19.
Weed seeds in and on the soil are the primary cause of weed infestations in arable fields. Previous studies have documented reductions in weed seedbanks due to cropping system diversification through extended rotation sequences, but the impacts of different rotation systems on additions to and losses from weed seedbanks remain poorly understood. We conducted an experiment in Iowa, USA, to determine the fates of Setaria faberi and Abutilon theophrasti seeds in 2‐, 3‐ and 4‐year crop rotation systems when seed additions to the soil seedbank were restricted to a single pulse at the initiation of the study. Over the course of the experiment, seedlings were removed as they emerged and prevented from producing new seeds. After 41 months, seed population densities dropped >85% for S. faberi and >65% for A. theophrasti, but differences between rotation systems in the magnitude of seedbank reductions were not detected. Most of the reductions in seedbank densities took place from autumn through early spring in the first 5 months following seed deposition, before seedling emergence occurred, suggesting that seed predation and/or seed decay was important. For S. faberi, total cumulative seedling emergence and total seed mortality did not differ between rotation systems. In contrast, for A. theophrasti, seedling emergence was 71% lower and seed mortality was 83% greater in the 3‐ and 4‐year rotation systems than in the 2‐year system. Results of this study indicate that for certain weed species, such as A. theophrasti, crop rotation systems can strongly affect life‐history processes associated with soil seedbanks.  相似文献   

20.
Anoda cristata is a troublesome annual broad-leaved weed in summer crops in the rolling Pampa in Argentina; seeds are the only source of regeneration of this species. Seed persistence or depletion is the result of survival and loss processes, including predation. The objective of this study was to determine survival at two burial depths in undisturbed soil and predation rates of A. cristata seeds in soyabean crops in different rotations and tillage systems. Survival was discontinuous and decreased to 25% after 35 months, after which no further reduction in survival was observed to the end of the experiment at 96 months. No differences in seed survival between seeds placed on the soil surface and buried 5 cm below the soil surface were found at 80 months, but at later times survival was lower for seeds placed on the soil surface. Predation rates ranged between 0.3% day−1 and 6.7% day−1. Of the models tested, a polynomial regression of the rate of predation with time gave the best representation of seed predation. From January to July, predation was higher in non-tillage plots in the wheat/soyabean rotation. There was no significant difference in predation rates between tillage systems in the soyabean monoculture and no difference between planting densities. Higher crop residue levels in non-tillage plots in the wheat/soyabean rotation was the dominant factor influencing seed predation, probably because such habitat favours the presence of seed predators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号