首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oriental tobacco worm, Helicoverpa assulta Guenée, is one of the most destructive pests of tobacco and peppers in China. We determined the susceptibility of H. assulta reared on an artificial diet, chili pepper and tobacco to four insecticides (fenvalerate, phoxim, methomyl, indoxacarb) under laboratory conditions associated with the activities of acetylcholinesterase (AChE), carboxylesterase (CarE) and glutathione S-transferase (GST) in its larvae. H. assulta larvae that were fed with chili pepper were more susceptible to fenvalerate, indoxacarb, and phoxim than those that were fed with tobacco and the artificial diet, but not to methomyl. The larvae that were fed with chili pepper were 3.65-, 2.49-, 1.92- and 2.44-fold more susceptible to fenvalerate, phoxim, methomyl, and indoxacarb than those fed with tobacco, respectively. The AChE activities of H. assulta larvae that were fed with chili pepper and tobacco were 2.12 and 1.07 μmol mg−1 15 min−1, respectively, almost 2-fold difference. The CarE activity of H. assulta larvae that were fed with chili pepper, tobacco and the artificial diet was 4.12, 7.40 and 7.12 μmol mg−1 30 min−1, respectively. Similarly, the GST activities of H. assulta larvae that were fed with chili pepper, tobacco and the artificial diet was 52.02, 79.37 and 80.02 μmol mg−1 min−1, respectively. H. assulta larvae that were fed with chili pepper were more resistance to the tested insecticides. The low activities of AChE and the high activities of CarE and GST lead to H. assulta become more susceptible to the tested insecticides.  相似文献   

2.
茚虫威对草地贪夜蛾的毒力及解毒酶的诱导作用   总被引:2,自引:0,他引:2  
茚虫威对鳞翅目害虫幼虫具有卓越的杀虫活性,是替代传统杀虫剂及治理抗药性害虫的理想药剂。为了明确茚虫威对草地贪夜蛾的生物活性及对其主要解毒酶活性的影响,为使用茚虫威科学防治草地贪夜蛾提供参考,本研究采用浸叶法测定了广西南宁草地贪夜蛾种群3龄幼虫对茚虫威敏感性及增效醚(PBO)、磷酸三苯酯(TPP)、顺丁烯二酸二乙酯(DEM)对茚虫威的增效作用;并测定了亚致死浓度(LC_(20))茚虫威对草地贪夜蛾体内MFO、GSTs和CarE酶的诱导作用。结果表明,茚虫威对草地贪夜蛾的LC_(20)、LC_(50)和LC_(90)分别为8.95、20.62 mg/L和73.57 mg/L。DEM、PBO和TPP对茚虫威的增效倍数依次为2.24、2.05和0.50倍。亚致死浓度(LC_(20))茚虫威处理后对3龄幼虫体内GSTs的活性和MFO含量与无药剂处理(CK)相比显著升高(P0.05),而CarE活性无显著变化(P0.05)。本文结果显示,广西草地贪夜蛾仍可以用推荐剂量80 mg/L茚虫威防治,而代谢抑制剂PBO和DEM对茚虫威有明显的增效作用,且GSTs活性和MFO含量在茚虫威诱导后显著升高,初步推测这两种解毒酶可能影响将来草地贪夜蛾对茚虫威的抗药性发展。  相似文献   

3.
茚虫威属于噁二嗪类杀虫剂,与大多数杀虫剂不同的是其进入害虫体内需要经活化代谢转变成N-去甲氧羰基代谢物(decarbomethoxylated metabolite,DCJW)后不可逆地阻断钠通道,进而发挥杀虫活性。茚虫威由于其作用机制不同于常见的使钠离子通道延迟关闭的菊酯类药剂而被广泛用于鳞翅目和一些同翅目、鞘翅目害虫的防治。抗药性是任何杀虫药剂使用后面临的问题,茚虫威也不例外,许多害虫对其产生了不同程度的抗性。昆虫对茚虫威产生抗性的机制包括酯酶活性、谷胱甘肽S-转移酶(glutathione S-transferase,GST)和P450活性的增加以及分子靶标F1845Y、V1848I、L1014P的突变,这些对茚虫威抗性机制的研究基本都是基于抗性种群和敏感种群开展的,需要进一步验证其对抗性研究的贡献度。针对我国田间害虫种群对茚虫威的抗性现状,及时实施对茚虫威有效的抗性治理是迫切的。对于茚虫威的抗性治理除了传统的杀虫药剂轮用、混用外,需要利用其作用机制特点开展抗性治理策略研究。一是充分利用其活化代谢的特点,开展组合药剂的研究应用;二是菊酯类药剂和茚虫威的作用机制均与钠离子通道有关,但是前者是使钠离子通道关闭延迟,而后者是阻断钠离子通道,开展相关基础研究,使菊酯类药剂与茚虫威合理地用于抗性治理中。本文综述了茚虫威的抗性现状、抗性机制与交互抗性、茚虫威的抗性风险评价,针对茚虫威的抗性特点提出了抗性治理策略。  相似文献   

4.
Indoxacarb (DPX-MP062) is a recently introduced oxadiazine insecticide with activity against a wide range of pests, including house flies. It is metabolically decarbomethoxylated to DCJW. Selection of field collected house flies with indoxacarb produced a New York indoxacarb-resistant (NYINDR) strain with >118-fold resistance after three generations. Resistance in NYINDR could be partially overcome with the P450 inhibitor piperonyl butoxide (PBO), but the synergists diethyl maleate and S,S,S-tributyl phosphorothioate did not alter expression of the resistance, suggesting P450 monooxygenases, but not esterases or glutathione S-transferases are involved in the indoxacarb resistance. Conversely, the NYINDR strain showed only 3.2-fold resistance to DCJW, and this resistance could be suppressed with PBO. Only limited levels of cross-resistance were detected to pyrethroid, organophosphate, carbamate or chlorinated hydrocarbon insecticides in NYINDR. Indoxacarb resistance in the NYINDR strain was inherited primarily as a completely recessive trait. Analysis of the phenotypes vs. mortality data revealed that the major factor for indoxacarb resistance is located on autosome 4 with a minor factor on autosome 3. It appears these genes have not previously been associated with insecticide resistance.  相似文献   

5.
云杉大墨天牛和云杉小墨天牛是进境木材及木质包装中常见的检疫性害虫,由于墨天牛属近缘种之间的幼虫形态相似,形态鉴定资料不完整,对低龄幼虫的鉴定尤其困难。为了鉴定云杉大墨天牛和云杉小墨天牛,本文利用气相色谱-质谱联用仪(GC-MS)对云杉大墨天牛和云杉小墨天牛幼虫的表皮碳氢化合物进行了分析,经NIST数据库检索,并与标准图谱比较,应用色谱峰面积归一法测定各组分及其相对含量。结果表明,云杉大墨天牛和云杉小墨天牛幼虫表皮中的主要碳氢化合物由C24~C44的直链或支链、饱和及不饱和的长链烃类组成。云杉大墨天牛幼虫表皮有9种碳氢化合物,而云杉小墨天牛幼虫表皮有8种碳氢化合物,其中6种碳氢化合物为两种昆虫共有,但在含量上有差异。云杉大墨天牛特有的成分为正二十四烷、正三十六烷、正四十四烷,而云杉小墨天牛特有的成分为2-甲基-二十六烷、9-二十六碳烯。这些特有表皮碳氢化合物可用于近缘种云杉大墨天牛和云杉小墨天牛的分类鉴定。  相似文献   

6.
Widespread use of Bt crops for control of lepidopterous pests has reduced insecticide use and provided the tarnished plant bug the opportunity to become a serious pest on mid-South cotton. Organophosphate insecticides have predominantly been used against plant bugs in recent years due to the reduced efficacy of other insecticides. In this study, a biochemical approach was developed to survey enzymatic levels associated with organophosphate resistance levels in field populations of the tarnished plant bug. Forty-three populations were collected from the delta areas of Arkansas, Louisiana, and Mississippi. Three esterase substrates and one substrate each of glutathione S-transferase (GST) and acetylcholinesterase (AChE) were used to determine corresponding detoxification enzyme activities in different populations. Compared to a laboratory susceptible colony, increases up to 5.29-fold for esterase, 1.96-fold for GST, and 1.97-fold for AChE activities were detected in the field populations. In addition to the survey of enzyme activities among the populations, we also examined the susceptibility of major detoxification enzymes to several inhibitors which could be used in formulations to synergize insecticide toxicity against the target pests. As much as 52-76% of esterase, 72-98% of GST, and 93% of AChE activities were inhibited in vitro. Revealing variable esterase and GST activities among field populations may lead to a better understanding of resistance mechanisms in the tarnished plant bug. This study also reports effective suppression of detoxification enzymes which may be useful in future insecticide resistance management program for the tarnished plant bug and other Heteropteran pests on Bt crops.  相似文献   

7.
邢静  梁沛  高希武 《农药学学报》2011,13(5):464-470
采用叶片药膜法,使用亚致死浓度(LC10、LC25)的氯虫苯甲酰胺对小菜蛾Plutella xylostella(L.)3龄幼虫连续处理5代后,试虫对氯虫苯甲酰胺的敏感度分别比敏感品系下降了57.3% 和67.7%,同时对多杀菌素的敏感度也分别下降了60.2% 和51.5%,但对毒死蜱和高效氯氰菊酯的敏感度变化不明显。采用该浓度的氯虫苯甲酰胺分别处理小菜蛾3龄幼虫24、48和72 h,可诱导其羧酸酯酶(CarE)比活力上升,但对细胞色素P450 O-脱乙基酶(ECOD)、谷胱甘肽S-转移酶(GSTs)和芳基酰胺酶(AA)有明显的抑制作用;连续处理5代后,小菜蛾CarE和ECOD的比活力显著高于对照组,分别为对照组的1.16、1.40倍和1.65、1.56倍,但GSTs和AA的比活力则分别比对照下降了11.0%、27.5%和43.6%、52.5%。结果表明,小菜蛾对氯虫苯甲酰胺产生抗性的风险较高;羧酸酯酶和多功能氧化酶可能与小菜蛾对氯虫苯甲酰胺的敏感度下降有关。  相似文献   

8.
Of the 23 species of agricultural pest known to resist insecticides in China, 4 are cotton pests, 4 rice pests and 5 are pests of brassicae. In the green rice leafhopper, malathion resistance is caused by increased carboxylesterase (CarE) activity, which plays a more important role in the resistance to dimethoate than the mixed-function oxidases (mfos). The in-vitro and in-vivo results are in agreement with studies of synergism of malathion and dimethoate by TPP and EBP. These synergists delay the development of resistance, and EBP when added to malathion has limited the development of resistance to malathion in the green rice leafhopper. In the cotton aphid, resistance to organophosphates involves several factors: acetylcholinesterase (AChE) insensitivity, high CarE activity, slight (× 2) increase in glutathione S-transferases (GSH-ases), mfo activity as well as reduced penetration. In vitro, the I50 of the insensitive AChE is × 14 that of S aphids, and anaphthyl-acetate CarE hydrolysing activity is 70 times greater in R than in S aphids. Insecticide mixtures, alternation or rotation can delay build-up of resistance; resistance to malathion and trichlorfon was delayed in Culex pipiens pallens when the two insecticides were used together. Used singly each insecticide selected for high resistance within 25 generations. Mosaic rotation of dimethoate and fenvalerate delayed the onset of insecticide resistance in Lipaphis erysimi pseudobrassicae.  相似文献   

9.
Bacillus thuringiensis cotton is a variety of cotton genetically modified to contain a gene derived from B. thuringiensis bacteria; which results in expression of toxin protein that confers resistance to bollworm complex (the most destructive pest of cotton). Introduction of Bt cotton lowered the need of insecticides, but still a number of insecticides are used for other insects like jassids, whitefly, aphids and tobacco caterpillar to which Bt gene does not provide effective control. Imidacloprid (tradename Imidacel 17.8 SL) is an insecticide designed for control of these major sucking/piercing insects that affect cotton. So in the present work we studied the post effect of imidacloprid insecticide on plant health of three Bt cotton hybrids (RCH-134, JKCH-1947, NCEH-6R) as there are reports of this insecticide causing growth and yield enhancements in absence of insect pests. Imidacloprid was first sprayed at recommended concentration (40 ml/acre) on 3 months old plants sown in randomly designed plots with three replications of each hybrid. The spray was repeated three times at 10 days interval. The level of B. thuringiensis gene expression, peroxidase activity and total phenols was measured on third day after every spray in leaves along with growth and yield of plants. The insecticide has shown to increase the level of B. thuringiensis protein, peroxidase enzyme activity, total phenols, height, number of bolls retained on plants and yield. These observations suggested that the imidacloprid treated plants showed better growth and development, thereby imidacloprid has growth enhancing effect on Bt cotton plants in addition to its insecticidal properties.  相似文献   

10.
Transgenic Bt cotton expressing Cry1Ac is important in controlling various agricultural pests, including Helicoverpa armigera. Especially for transgenic crops that are cultivated in large expanses, avoiding resistance development is a key for ensuring sustainability of Bt technologies. Integrated pest management, in which transgenic crops are strategically combined with rational pesticide use, may help to prevent H. armigera resistance acquisition in Bt cotton. In this study, we evaluated the toxicity of a novel insecticide (chlorantraniliprole) on Cry1Ac-susceptible and resistant individuals of H. armigera. More specifically, we assessed the effect of chlorantraniliprole on the activity of two enzymes and conducted laboratory bioassays to determine its toxicity on H. armigera larvae. Chlorantraniliprole increased esterase and glutathione-S-transferase activities in Cry1Ac susceptible and resistant populations of H. armigera. Cry1Ac resistant populations XJ-F (Cry1Ac resistance ratio 21.8-fold), XJ-10.0 (95.8-fold) and BTR (3536.5-fold) did not show cross-resistance to chlorantraniliprole, with LC50 values of 0.0733 (μg/mL) in XJ-F, 0.0545 (μg/ml) in XJ-10.0 and 0.0731 (μg/mL) in BTR, which were close to that in the susceptible strain 96S (0.0954 μg/mL). Our work shows that chlorantraniliprole could be considered to be integrated in Bt cotton management schemes to delay the H. armigera resistance development.  相似文献   

11.
Although insecticide resistance is a widespread problem for most insect pests, frequently the assessment of resistance occurs over a limited geographic range. Herein, we report the first widespread survey of insecticide resistance in the USA ever undertaken for the house fly, Musca domestica, a major pest in animal production facilities. The levels of resistance to six different insecticides were determined (using discriminating concentration bioassays) in 10 collections of house flies from dairies in nine different states. In addition, the frequencies of Vssc and CYP6D1 alleles that confer resistance to pyrethroid insecticides were determined for each fly population. Levels of resistance to the six insecticides varied among states and insecticides. Resistance to permethrin was highest overall and most consistent across the states. Resistance to methomyl was relatively consistent, with 65–91% survival in nine of the ten collections. In contrast, resistance to cyfluthrin and pyrethrins + piperonyl butoxide varied considerably (2.9–76% survival). Resistance to imidacloprid was overall modest and showed no signs of increasing relative to collections made in 2004, despite increasing use of this insecticide. The frequency of Vssc alleles that confer pyrethroid resistance was variable between locations. The highest frequencies of kdr, kdr-his and super-kdr were found in Minnesota, North Carolina and Kansas, respectively. In contrast, the New Mexico population had the highest frequency (0.67) of the susceptible allele. The implications of these results to resistance management and to the understanding of the evolution of insecticide resistance are discussed.  相似文献   

12.
对甲胺磷敏感性的田间监测结果显示,绒茧蜂存在着抗性演化,毒力生物测定结果与AChE的K_i值的监测结果呈明显的相关性,每年9月至次年2月期间AChE敏感性最低,8月期间敏感性最高。甲胺磷可显著地抑制绒茧蜂AChE、CarE和GSTs的活性。PB和TPP对AChE的活体抑制率极低,但PB可强烈抑制CarE的活性,而TPP仅在高浓度时对CarE有较显著的抑制作用,PB对甲胺磷有显著的增效作用,而TPP对甲胺磷无增效作用。AChE的K_m、V_(max)及K_i值研究结果表明,田间绒茧蜂对有机磷和氨基甲酸酯的抗性与AChE对杀虫剂的不敏感性有关。由此认为,绒茧蜂对有机磷的抗性主要与其最重要的靶标酶AChE的敏感性改变及多功能氧化酶有关。  相似文献   

13.
甜菜夜蛾敏感品系的获得及其对12种杀虫剂的敏感基线   总被引:2,自引:2,他引:0  
以高效氯氰菊酯为筛选药剂,通过室内单对汰选获得了甜菜夜蛾敏感品系,并采用浸叶法和点滴法测定该敏感品系对甲氨基阿维菌素苯甲酸盐、氯虫苯甲酰胺等12种常用药剂的敏感基线。浸叶法测得该品系对供试药剂的敏感性由高到低依次为:甲氨基阿维菌素苯甲酸盐(LC50为0.0340 mg/L)、茚虫威、氟啶脲、甲氧虫酰肼、氯虫苯甲酰胺、氟虫双酰胺、高效氯氰菊酯、虫酰肼、多杀菌素、毒死蜱、虫螨腈、灭多威(124.0482mg/L)。点滴法测得12种杀虫剂LD50由小到大依次为:高效氯氰菊酯、茚虫威、甲氧虫酰肼、甲氨基阿维菌素苯甲酸盐、虫酰肼、毒死蜱、多杀菌素、氯虫苯甲酰胺、虫螨腈、氟虫双酰胺、灭多威、氟啶脲。结果表明,该敏感基线可用于甜菜夜蛾的抗药性监测。  相似文献   

14.
The toxicity of the oxadiazine insecticide indoxacarb to the European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae), was evaluated in the presence and absence of S,S,S-tributyl phosphorotrithioate (DEF), an inhibitor of hydrolytic metabolism. Bioassays involving topical application of different concentrations of indoxacarb to third instars of a susceptible O. nubilalis laboratory strain were performed, and in vitro metabolism experiments involving [14C] indoxacarb were examined to determine the role of hydrolytic metabolism in indoxacarb activation. Indoxacarb toxicity decreased in the presence of DEF indicating antagonism of toxicity. Results of in vivo and in vitro inhibition experiments indicated a reduction of indoxacarb activation and formation of the hydrolytic metabolite. These results are consistent with the proposed mechanism of hydrolytic activation for this compound.  相似文献   

15.
Biological characterization of sulfoxaflor, a novel insecticide   总被引:1,自引:0,他引:1  
BACKGROUND: The commercialization of new insecticides is important for ensuring that multiple effective product choices are available. In particular, new insecticides that exhibit high potency and lack insecticidal cross‐resistance are particularly useful in insecticide resistance management (IRM) programs. Sulfoxaflor possesses these characteristics and is the first compound under development from the novel sulfoxamine class of insecticides. RESULTS: In the laboratory, sulfoxaflor demonstrated high levels of insecticidal potency against a broad range of sap‐feeding insect species. The potency of sulfoxaflor was comparable with that of commercial products, including neonicotinoids, for the control of a wide range of aphids, whiteflies (Homoptera) and true bugs (Heteroptera). Sulfoxaflor performed equally well in the laboratory against both insecticide‐susceptible and insecticide‐resistant populations of sweetpotato whitefly, Bemisia tabaci Gennadius, and brown planthopper, Nilaparvata lugens (Stål), including populations resistant to the neonicotinoid insecticide imidacloprid. These laboratory efficacy trends were confirmed in field trials from multiple geographies and crops, and in populations of insects with histories of repeated exposure to insecticides. In particular, a sulfoxaflor use rate of 25 g ha?1 against cotton aphid (Aphis gossypii Glover) outperformed acetamiprid (25 g ha?1) and dicrotophos (560 g ha?1). Sulfoxaflor (50 g ha?1) provided a control of sweetpotato whitefly equivalent to that of acetamiprid (75 g ha?1) and imidacloprid (50 g ha?1) and better than that of thiamethoxam (50 g ha?1). CONCLUSION: The novel chemistry of sulfoxaflor, its unique biological spectrum of activity and its lack of cross‐resistance highlight the potential of sulfoxaflor as an important new tool for the control of sap‐feeding insect pests. Copyright © 2010 Society of Chemical Industry  相似文献   

16.
采用人工饲料添加法,研究了不同浓度的槲皮素、2-十三烷酮和葫芦素B 3种植物次生物质对B型烟粉虱Bemisia tabaci羧酸酯酶(CarE)活性的影响,同时比较研究了用3种植物次生物质处理后敌敌畏、脱叶磷、灭多威、乐果和氧乐果5种药剂对CarE 的抑制中浓度(I50)的变化。结果表明: 0.01~1.0 mg/mL的槲皮素对B型烟粉虱成虫CarE活性均具有明显的诱导增加作用,最高为对照的4.32倍; 0.1和0.5 mg/mL的2-十三烷酮处理使CarE活性比对照分别下降了22%和58%; 0.75~30.0 mg/L的葫芦素B对烟粉虱CarE活性均表现为抑制作用;用1.0 mg/mL的槲皮素处理24 h后,敌敌畏和脱叶磷对烟粉虱CarE的I50值分别增加为对照的20.05和3.16倍; 3.75 mg/L 的葫芦素B处理后,敌敌畏和灭多威对CarE 的I50值分别增加为对照的25.94、2.45倍; 1.0 mg/mL的2-十三烷酮处理后敌敌畏、脱叶磷和乐果对CarE 的I50值分别降低了89%、83%和90%。  相似文献   

17.
苏云金芽胞杆菌(Bacillus thuringiensis,Bt)可产生多种杀虫活性物质,是一种应用最广泛的微生物杀虫剂。最近研究表明Bt对化学杀虫剂抗性害虫有较好的防治效果,并且与化学杀虫剂的联合使用可以提高杀虫效果,减少化学杀虫剂的用量。为了进一步设计更好的Bt与化学杀虫剂协同控害方案,本论文研究了不同亚种的Bt菌株与常用化学杀虫剂的兼容性。泛基因组分析表明不同亚种的Bt菌株在基因组成上有较大差异,说明Bt菌株对化学杀虫剂的反应可能会有所不同。进一步化学杀虫剂对Bt增殖影响分析结果显示,溴虫腈对大部分Bt测试菌株有抑制,说明Bt与化学杀虫剂协同使用时需要测定两者兼容性。高效氯氰菊酯对所有常用的防治鳞翅目害虫的Bt杀虫剂亚种类型库斯塔克亚种(Bt kurstaki,Btk)和鲇泽亚种(Bt aizawai,Bta)菌株影响都不大,可以进行协同使用;氯虫苯甲酰胺和茚虫威对Btk菌株HD1有一定抑制作用,定虫隆对其有较好的促进作用,说明HD1与定虫隆协同使用效果更好;茚虫威对Bta菌株G03影响较小,定虫隆对其有一定的抑制作用,氯虫苯甲酰胺对G03则有一定的促进作用,说明G03及其衍生菌株可以与氯虫苯甲酰胺、茚虫威协同使用。本研究结果说明Bt菌株对不同杀虫剂的敏感性是有差异的,可以通过筛选获得兼容性好的组合,为进一步制定Bt杀虫剂与化学杀虫剂配伍方案与协同使用技术提供了理论指导与数据参考,对实现化学农药减量施用具有重要的指导意义。  相似文献   

18.
为明确粘质沙雷氏菌Serratia marcescens S-JS1与杀虫剂对灰飞虱的联合作用,以及S-JS1对灰飞虱解毒酶和保护酶活性的影响,以灰飞虱3龄若虫为对象,采用喷雾法比较了S-JS1与5种杀虫剂 (螺虫乙酯、噻虫嗪、吡虫啉、啶虫脒和毒死蜱) 单用,以及菌、药混用对灰飞虱的杀虫活性,测定了灰飞虱取食经S-JS1处理的水稻后,虫体内羧酸酯酶 (CarE)、谷胱甘肽-S-转移酶 (GSTs)、过氧化物酶 (POD) 和超氧化物歧化酶 (SOD) 的活性变化。结果表明:粘质沙雷氏菌S-JS1分别与不同浓度杀虫剂混用,均可提高杀虫剂对灰飞虱的致死率。其中,109 cfu/mL的S-JS1与1.25 mg/L的噻虫嗪混用处理3 d,或与25 mg/L的螺虫乙酯混用处理5 d,灰飞虱的死亡率分别为65.58%和76.27%,均显著高于同浓度杀虫剂单用的处理 (噻虫嗪单用时致死率为44.24%,螺虫乙酯为49.22%),表现为增效作用 (χ2 > 3.84,实测死亡率 – 预期死亡率 > 0);其他各混用处理均为相加作用 (χ2 < 3.84)。灰飞虱取食经粘质沙雷氏菌处理的水稻苗后12和24 h,其CarE活性与对照组间无显著性差异,GSTs活性呈先降低后升高趋势,POD和SOD活性均低于对照组。研究表明,粘质沙雷氏菌S-JS1可能降低了灰飞虱对杀虫剂的抵抗力。本研究可为探索昆虫病原细菌与杀虫剂间的联合应用提供参考,为灰飞虱的有效防治提供新思路。  相似文献   

19.
The use of selective insecticides may improve conservation of natural enemies and therefore contribute to the success of integrated pest management (IPM) programs. In this study, the toxicity of two commonly used selective insecticides, indoxacarb and spinosad, to the multicolored Asian lady beetle, Harmonia axyridis (Pallas), was evaluated. Third instars and adults of H. axyridis were exposed to indoxacarb at 50 and 100% of the field rate (FR), to spinosad at 100% FR and to water (untreated check) under laboratory conditions via three routes of exposure. Treatments were applied directly on insects (i.e., topical application), on Petri dishes (i.e., residues), or on soybean aphids, Aphis glycines Matsumara (i.e., treated prey). Mortality of exposed individuals in each life stage was recorded 2 and 7 days after treatment. Logistic regression indicated that indoxacarb at 100% FR, followed by indoxacarb at 50% FR, was more insecticidal than spinosad to third instars. Mortality was higher when H. axyridis were exposed to both insecticides via residues followed by treated prey. Indoxacarb at 100 or 50% FR was insecticidal to adults. Adults were tolerant to spinosad via all routes of exposure. The present results suggest that indoxacarb may decrease H. axyridis field populations by causing mortality to larvae and adults via all routes of exposure. Implications of the toxicity of indoxacarb to H. axyridis within an IPM context and possible reasons for the differences in susceptibility of H. axyridis for each route of exposure are discussed.  相似文献   

20.
为明确菊酯类药剂对草地贪夜蛾Spodoptera frugiperda的防治效果,采用点滴法在室内测定高效氯氟氰菊酯、高效氯氰菊酯、联苯菊酯、溴氰菊酯和茚虫威原药对草地贪夜蛾3龄幼虫的毒力,利用实时荧光定量PCR技术测定3龄幼虫在这5种药剂诱导不同时间下其体内钠离子通道基因片段的表达量变化。结果显示,高效氯氟氰菊酯、溴氰菊酯、联苯菊酯、茚虫威和高效氯氰菊酯这5种药剂处理草地贪夜蛾3龄幼虫24 h后的LD50值分别为74.911、83.280、152.662、179.372、567.250 mg/L;处理48 h后的LD50值分别为18.946、67.874、120.888、132.790、461.635 mg/L;同时发现草地贪夜蛾3龄幼虫钠离子通道基因的表达均呈现不被诱导或诱导下调现象,表明草地贪夜蛾幼虫可通过降低靶标基因的表达量进而减少药剂对其的毒性。表明供试4种拟除虫菊酯类药剂和1种氯虫苯甲酰胺类药剂可作为草地贪夜蛾田间应急防控药剂施用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号