首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After single spikelet inoculation, the infection process of Fusarium culmorum and spread of fungal hyphae in the spike tissues were studied by scanning and transmission electron microscopy. While hyphal growth on outer surfaces of the spike was scanty and no successful penetration was observed, the fungus developed a dense mycelium on the inner surfaces and effectively invaded the lemma, glume, palea and ovary by penetration pegs. During the inter- and intracellular spreading of the fungus, marked alterations in the host tissues were observed, including degeneration of cytoplasm, cell organelles, and depositions of electron dense material between cell wall and plasmalemma. Ultrastructural studies revealed that host cell walls in proximity of the penetration peg and in contact with hyphae were less dense or transparent which suggested that cell wall degrading enzymes were involved in colonisation of host tissues by fungal hyphae. Enzyme- and immunogold-labelling investigations confirmed involvement of extracellular enzymes, that is cellulases, xylanases and pectinases, in degradation of cell wall components. Localization studies of trichothecenes indicated that toxins could be detected in host tissues at an early stage of infection.  相似文献   

2.
禾谷镰刀菌在小麦穗部侵染过程的细胞学研究   总被引:8,自引:0,他引:8  
 采用扫描和透射电镜技术系统地观察了禾谷镰刀菌(Fusarium graminearum)在小麦穗部的侵染过程。接种后6~12 h,分生孢子在小麦穗部的任何部位均可萌发,每个孢子可产生1至多个芽管,新产生的芽管并不立即入侵寄主组织,而是在寄主体表生长扩展;接种后36~48 h观察,小穗颖片、外稃、内稃的内侧和子房的表面形成了密集的菌丝网,然而在小麦穗轴表面、颖片和内稃的外表面,菌丝生长缓慢、分布稀疏,但颖片外表边缘的菌丝可跨越边缘扩展到颖片的内表皮上;接种后36 h,寄主体表菌丝产生入侵菌丝,以直接入侵方式由颖片、外稃、内稃的内侧及子房的顶部侵入寄主组织体内,随后,菌丝以胞间和胞内生长的方式向下扩展;接种后4~5 d,菌丝由上述组织扩展到达穗轴后,在穗轴内沿微管束组织和皮层组织向上和向下扩展,延伸到相邻小花,随菌丝在小麦穗部组织内不断地生长扩展,使得寄主细胞坏死、解体,并最终导致整个麦穗的枯死。  相似文献   

3.
Cytological studies were carried out to elucidate the importance of cell wall degrading enzymes (CWDE) during infection of wheat spikes by Fusarium graminearum. Scanning electron micrographs revealed that at 6–24 hours after inoculation (hai) of single spikelets with macroconidia of F. graminearum, the fungus germinated by forming several germ tubes and developed a dense hyphal network in the cavity of the spikelet. At 24–36hai, the fungus formed infection hyphae which invaded the ovary and inner surface of the lemma and palea. Transmission electron microscopical studies revealed that the fungus extended inter- and intracellularly in the ovary, lemma and rachis and caused considerable damage and alterations to the host cell walls. In different tissues of healthy and F. graminearum-infected wheat spikes the cell wall components cellulose, xylan and pectin were localized by means of enzyme-gold and immuno-gold labelling techniques. Localization of cellulose, xylan and pectin showed that host cell walls which were in direct contact with the pathogen surface had reduced gold labelling compared to considerable higher labelling densities of walls distant from the pathogen–host interface or in non-colonized tissues. The reduced gold labelling densities in the infected host cell walls indicate that these polysaccharide degrading enzymes might be important pathogenicity factors of F. graminearum during infection of wheat spikes. The results revealed that, infection and colonization of wheat spikes by F. graminearum and reactions of infected host tissue were similar to those reported for F. culmorum.  相似文献   

4.
Colletotrichum lagenarium is the casual agent of anthracnose disease of melons. Light and scanning electron microscopy were used to observe the infection process of C. lagenarium on the leaves of two melon cultivars differing in susceptibility. On both cultivars conidia began germinating 12 h after inoculation (hai), forming appressoria directly or at the tips of germ-tubes. By 48 hai appressoria had melanised and direct penetration of host tissue had begun. On the susceptible cultivar, infection vesicles formed within 72 hai and developed thick, knotted primary hyphae within epidermal cells. By 96 hai C. lagenarium produced highly branched secondary hyphae that invaded underlying mesophyll cells. After 96 hai, light brown lesions appeared on the leaves, coincident with cell necrosis and invasion by secondary hyphae. While appressoria formed more quickly on the resistant cultivar, fewer germinated to develop biotrophic primary or invasive necrotrophic secondary hyphae than on the susceptible cultivar. These results confirm that C. lagenarium is a hemibiotrophic pathogen, and that resistance in melons restricts colonisation by inhibiting the development of necrotrophic secondary hyphae.  相似文献   

5.
Histopathological assessment of infection by the crown rot pathogen Fusarium pseudograminearum in wheat seedling tissues was performed using fluorescence microscopy. The coleoptiles and leaf sheaths of four host cultivars of differing susceptibility were examined. Leaf sheaths were most frequently penetrated via stomata, indicated by initial lesions forming at the guard cells. Internally, cell wall penetration was facilitated by penetration structures which appeared as hyphal swellings or septate foot‐shaped appressoria. Colonization of leaf sheaths resulted in the re‐emergence of hyphae from stomata on both surfaces of the sheath. These hyphae are hypothesized to have two major roles; first as exploratory hyphae for colonization of new tissues, and secondly as sites of profuse conidial production. The formation of conidia on the leaf sheath surface was only recorded on the most susceptible bread wheat genotype. No other major differences in host–pathogen interactions were observed among these cultivars. Almost all cell types in the leaf sheath tissues were extensively colonized, except for the vascular bundles and silica cells. This investigation provides the first comprehensive assessment of F. pseudograminearum infection structures and growth patterns during the infection of wheat seedlings.  相似文献   

6.
Fusarium species are soil-borne fungal pathogens that produce a variety of disease symptoms when attacking crop plants. The mode of root colonization of Eucalyptus viminalis seedlings by a pathogenic F. oxyporum strain (Foeu1) at the ultrastructural level and changes in cell wall pectin during host pathogen interactions are described. Root systems of E. viminalis plants were inoculated with F. oxysporum in an in vitro model system. Hyphae of F. oxysporum adhered to the outer epidermal cell walls through fibrillar material, and after penetration they spread into the internal tissues. They developed intercellularly and intracellularly in the root cortex and invaded vascular tissues. Papillae were induced, and the host plasma membrane ruptured in colonized cells, causing rapid host tissue and cell damage. Changes in distribution and occurrence of nonesterified and methyl-esterified pectins were evaluated after root colonization by F. oxysporum using two monoclonal antibodies, JIM 5 and JIM 7, respectively. Nonesterified pectin in control roots was mainly localized in the epidermal cell walls and middle lamellae in parenchymal cortex, whereas methyl-esterified pectin accumulated more in primary cell walls of the cortex and phloem. Decreases in immunodetected nonesterified and methyl-esterified pectins were associated with extensive plant tissue degradation after root colonization by the pathogenic fungus.  相似文献   

7.
小麦穗组织中脱氧镰刀菌烯醇毒素的免疫细胞化学定位   总被引:5,自引:0,他引:5  
 采用免疫细胞化学技术对禾谷镰刀菌(Fusarium graminearum)在侵染小麦穗部过程中产生的脱氧镰刀菌烯醇毒素(deoxynivalenol,DON)进行了定位分析。在接种后24h,当菌丝在外稃、内稃的内侧表面扩展而尚未侵入寄主细胞前,病菌已分泌DON,并且DON已扩散到寄主组织内。在菌丝细胞内,DON主要被定位于细胞质、线粒体及细胞壁上;在寄主细胞中DON主要分布于细胞壁、叶绿体、细胞质和内质网上。在侵染初期(接种后2 d),菌丝仅能在寄主细胞间隙扩展,随寄主组织中DON浓度的升高,寄主细胞相应发生了一系列病理变化。随寄主细胞坏死(接种后3~4d),病菌进入坏死的寄主细胞。上述结果表明,DON在禾谷镰刀菌的侵染、致病和定殖过程中起着重要的作用。毒素标记结果表明病菌产生的毒素可通过穗轴微管束组织从侵染部位向上、向下转输,毒素向上的转输量明显高于向下转输  相似文献   

8.
Nonpathogenic isolates of Fusarium oxysporum can be successful antagonists of pathogenic forms of the same fungal species that commonly attacks crop plants. The characteristics that distinguish nonpathogenic from pathogenic forms are not well understood. In this study, the mode of root colonization of Eucalyptus viminalis seedlings by a nonpathogenic F. oxysporum strain is described at the ultrastructural level. Root systems of E. viminalis plants were inoculated with nonpathogenic F. oxysporum strain Fo47 in an in vitro model system. Changes in the occurrence of nonesterified and methyl-esterified pectins in colonized E. viminalis roots were evaluated by in situ immunolabeling using two monoclonal antibodies, JIM 5 and JIM 7. Modes of penetration and root colonization patterns in E. viminalis seedlings by the nonpathogenic fungus were similar to those described for pathogenic forms of F. oxysporum. However, root interactions differed in that the nonpathogenic fungus did not induce host tissue damage. No papilla-like appositions were observed in host cells in response to invading hyphae, which did not disrupt the host plasma membrane in many cases, suggesting that a biotrophic relationship was established. Root colonization by the nonpathogenic strain did not induce alteration in JIM 7 labeling of methyl-esterified pectin in E. viminalis cell walls, whereas nonesterified pectin was detected to a significantly greater extent in cell walls of roots colonized by the fungus. Pectin components decreased slightly only at points of hyphal contact with host cells. Because nonpathogenic strains utilize pectin in pure culture, host control over enzyme activity or production by the fungi may at least partly explain their compatible interactions with host tissues.  相似文献   

9.
戊唑醇对小麦赤霉菌侵染影响的细胞学研究   总被引:7,自引:0,他引:7       下载免费PDF全文
采用电镜技术研究了三唑类杀菌剂戊唑醇(tebuconazole)对赤霉病菌Fusarium gramineaum侵染小麦穗部过程的影响.结果表明:人工接种前2天施药,可推迟外稃内表皮、内稃及子房上分生孢子的萌发,但不能完全抑制其萌发,可引起芽管和菌丝严重畸形,不能形成侵染菌丝侵入寄主.而人工接种后2天施药,戊唑醇则严重抑制了病菌菌丝的生长,使寄主体表和寄主组织内的菌丝形态、结构发生了一系列异常变化,并最终塌陷死亡,使菌丝不能扩展到穗轴部位.接种后4天施药,病菌虽已扩展到穗轴,但戊唑醇仍对穗轴中菌丝生长具有明显的抑制作用.对赤霉毒素的免疫细胞化学标记结果表明,药剂处理与未处理的寄主和菌丝细胞中都存在有毒素,但标记密度在药剂处理的寄主和菌丝细胞中明显低于未处理对照.  相似文献   

10.
Two antisera raised against acidic β-1,3-glucanase and acidic chitinase from tobacco were used to investigate the subcellular localization of the two enzymes in Fusarium culmorum -infected wheat spike by means of the immunogold labelling technique. The studies demonstrated that the distribution of β-1, 3-glucanase and chitinase were very similar in the uninoculated healthy and infected wheat spikes. The enzymes were localized mainly in the cell walls of different tissues including the lemma, ovary and rachis of the wheat spike, while the cytoplasm and organelles of cells in these tissues showed almost no labelling. However, the accumulation of β-1,3-glucanase and chitinase in the infected wheat spikes differed distinctly between resistant and susceptible wheat cultivars. The labelling densities for the two enzymes in the infected lemma, ovary and rachis of the susceptible cultivar Agent increased only slightly as compared to the corresponding uninoculated healthy tissues, whereas higher labelling densities of β-1,3-glucanase and chitinase were found in the infected tissues of wheat spikes from the resistant cultivar Arina compared to the corresponding uninoculated healthy tissues. Furthermore, the labelling of β-1,3-glucanase and chitinase also occurred over the cell walls of the hyphae in the infected wheat spike, but not over the hyphal cytoplasm. In addition, labelling for the two enzymes was often detected over the cell wall appositions and the electron-dense material located between the host cell and the hyphal cell in the infected tissues of the resistant wheat cultivar. The findings reported in the present study indicate that β-1,3-glucanase and chitinase accumulation in the F. culmorum -infected wheat spike may be involved in resistance to pathogen spread in the host tissue.  相似文献   

11.
为了解橡胶树2种炭疽病菌的侵染结构发育分化过程,采用平板菌落生长速率法测定了3株胶孢炭疽菌Colletotrichum gloeosporioides和3株尖孢炭疽菌C.acutatum的菌丝生长速率,测量其分生孢子大小,显微观察2种炭疽菌在疏水表面诱导下侵染结构的发育分化过程。结果表明,胶孢炭疽菌菌丝生长速率为0.96~1.36 cm/d,显著高于尖孢炭疽菌的菌丝生长速率0.72~0.89 cm/d,但二者分生孢子大小无显著差异。在疏水表面诱导下,2种炭疽菌分生孢子在接种2~6 h后开始萌发,12 h孢子萌发率为71.70%~88.05%,13~16 h开始分化附着胞,24 h附着胞形成率为48.99%~70.74%,36 h菌丝诱发形成大量附着枝,48 h后分生孢子产生的次生菌丝也可诱发形成附着枝,附着枝呈圆形、姜瓣形、梨形或不规则形。分生孢子极易产生,可在菌丝顶端成簇或菌丝侧面排列产生,也可由分生孢子形成的芽管产生,或在芽管分化附着胞过程分枝形成分生孢子;附着胞多着生于芽管顶端,少数附着胞顶端可继续萌发类似短芽管结构,再次分化形成可黑色化的次级附着胞。表明橡胶树2种炭疽菌不同菌株间分生孢子萌发时间、孢子萌发率、附着胞形成时间和形成率有一定差异,但种间无明显差异;橡胶树炭疽菌分生孢子极易形成,在疏水表面容易分化形成附着胞和附着枝,说明具有极强的适生性。  相似文献   

12.
Ultrastructural aspects of host–parasite interactions were investigated in fruits and leaves of citrus (satsuma mandarin) infected with Elsinoe fawcettii. Fungal infection induced host tissues to form cork layers bordering the necrotic areas below the infected sites. The cork layers were composed of compact host cells with convoluted cell walls and alternating lamellations, indicating ligno–suberized tissues in the wound periderm. No host tissues below the cork layers were invaded by hyphae. Hyphae grew intercellularly and intracellularly, often causing hypertrophy and compartmentalization of infected host cells. Also, host cells adjacent to invading hyphae showed accumulation of electron-dense materials and the formation of host cell wall protuberances in intercellular spaces. Hyphae had concentric bodies that showed an electron-transparent core surrounded by an electron-dense layer with radiating filamentous structures on their surface. One or more intrahyphal hyphae were found in the cytoplasm of intercellular or intracellular hyphae. These results suggest that the ligno–suberized cork layers in the wound periderm of citrus act as a protective barrier, which leads to restricted growth of E. fawcettii in bordered scab lesions. The fungus is thought to form concentric bodies and intrahyphal hyphae as a survival mechanism against the water- and nutrient-deficient environments that occur in the cork layers of necrotic host parts.  相似文献   

13.
Pathogen development and host responses in wheat spikes of resistant and susceptible cultivars infected by Fusarium culmorum causing Fusarium head blight (FHB), were investigated by means of electron microscopy as well as immunogold labelling techniques. The studies revealed similarities in the infection process and the initial spreading of the pathogen in wheat spikes between resistant and susceptible cultivars. However, the pathogen’s development was obviously more slow in the resistant cultivars as in comparison to a susceptible one. The structural defence reactions such as the formation of thick layered appositions and large papillae were essentially more pronounced in the infected host tissues of the resistant cultivars, than in the susceptible one. β -1,3-glucan was detected in the appositions and papillae. Furthermore, immunogold labelling of lignin demonstrated that there were no differences in the lignin contents of the wheat spikes between susceptible and resistant cultivars regarding the uninoculated healthy tissue, but densities of lignin in host cell walls of the infected wheat spikes differed distinctly between resistant and susceptible cultivars. The lignin content in the cell walls of the infected tissues of the susceptible wheat cultivar increased slightly, while the lignin accumulated intensely in the host cell walls of the infected wheat spikes of the resistant cultivars. These findings indicate that lignin accumulation in the infected wheat spikes may play an important role in resistance to the spreading of the pathogen in the host tissues. Immunogold labelling of the Fusarium toxin DON in the infected lemma showed the same labelling patterns in the host tissues of resistant and susceptible cultivars. However, there were distinct differences in the toxin concentration between the tissues of the susceptible and resistant cultivars. At the early stage of infection, the labelling densities for DON in resistant cultivars were significantly lower than those in the susceptible one. The present study indicates that the FHB resistant cultivars are able to develop active defence reactions during infection and spreading of the pathogen in the host tissues. The lower accumulation of the toxin DON in the tissues of the infected spikes of resistant cultivars which results from the host’s defence mechanisms may allow more intensive defence responses to the pathogen by the host.  相似文献   

14.
The fungal pathogen Fusarium graminearum attacks the seed spikes of barley and wheat, causing sterility, reduced seed weight and accumulation of mycotoxins. To explore infection patterns in barley and in the Arabidopsis model system, the green fluorescent protein gene (gfp) was used to transform F. graminearum. Inoculation of intact barley spikes resulted in rapid colonization of the brush hairs (ovary epithelial hairs) at the extruded seed tip within 7 h. Colonization followed a pattern of rapid basipetal growth along the pericarp epithelium (interior to the lemma and palea), accompanied by slower growth inward through the pericarp and testa. However, at 16 days after infection the aleurone and starchy endosperm remained uninfected, despite heavy colonization of the pericarp. Colonization of the outer lemma also occurred but was much slower. No increase in amylase enzyme activities was found, discounting the possibility that F. graminearum utilizes gibberellin-induced host enzymes to tap the endosperm for nutrients. The transformed Fusarium strain readily infected Arabidopsis thaliana leaves and produced copious spores within distant leaves. Results show the utility of gfp in tracing the growth of this pathogen, without misinterpretation due to contaminating fungi, and for resistance studies utilizing the Arabidopsis model system.  相似文献   

15.
ABSTRACT External surfaces of barley florets have thick-walled epidermal cells resistant to direct penetration by the head blight pathogen, Fusarium graminearum. Surfaces within the floral cavity have thin-walled, susceptible cells. How the fungus gains access to the floral cavity, causing head blight, has not been determined. To investigate pathways of entry, field-grown plants were sprayed with macroconidial inoculum after heads emerged from the flag leaf sheath and then were mist irrigated daily in the morning and evening. On selected days, 1 to 8 days after inoculation (DAI), 80 to 190 florets per day were harvested, dissected, and examined for presence and location of mycelial colonies. At 1 to 12 DAI, 57 to 100 florets likewise were examined for lesions. Patterns of colonization indicated that the fungus entered florets principally through crevices between the overlapping lemma and palea or through the apical floret mouth. The crevices were open for entry until approximately 8 days after heads emerged. Most florets had mycelial colonies on the external surface in a sheltered pocket near the base of the ventral furrow of the palea. Mycelia spread laterally from the furrow to the crevice between lemma and palea. Anther colonization had only a minor role in invasion of florets. Hyphal penetration of stomates was not seen. Lesions usually developed first within 3 mm of the floret apex or 3 mm of the floret base. Within florets, lesions often were contiguous between lemma and palea, palea and caryopsis, or in all three floret parts. However, lesions in the caryopsis developed later and were fewer in number than in the lemma and palea and always were associated with lesions in the palea. The results show the importance of initial mycelial colonization of floret outer surfaces, pathways of entry via lemma or palea crevices or floret mouth, and spread of lesions within the floret at interfaces between lemma, palea, and caryopsis.  相似文献   

16.
球毛壳ND35菌株在宿主植物上的侵染定殖   总被引:3,自引:2,他引:1  
为了解球毛壳Chaetomium globosum ND35菌株在宿主植物上的侵染定殖方式和途径,以毛白杨组培苗为宿主植物,借助光学显微镜、扫描电镜、透射电镜,结合免疫荧光标记技术,研究了球毛壳ND35菌株子囊孢子萌发后在毛白杨上的侵染行为及其菌丝在组培苗根部的定殖。结果显示,子囊孢子萌发后形成的菌丝,能从杨树苗根、茎部表面细胞间的缝隙侵入或在根表面形成附着胞,进而形成侵染钉直接从表皮细胞侵入,在叶部主要从气孔侵入叶片内部。侵入根部的菌丝主要定殖于表皮细胞、外皮层细胞和细胞间隙,未进入内皮层和维管束组织。  相似文献   

17.
为明确植物病原真菌禾谷镰刀菌Fusarium graminearum全生活史的转录组特征和基因表达模式,采用生物信息学技术对其生活史不同阶段15个时期或组织的链特异性RNA-seq数据进行分析。结果表明,共有8 106个基因在所有时期均有表达,为禾谷镰刀菌生活史核心基因,占总基因数的47.2%;有性生殖和侵染过程中表达的基因数相对较多,其中有性生殖后期表达的基因数最多,达15 221个;无性产孢和侵染小麦穗过程中基因表达水平整体较高,而分生孢子中基因表达水平最低。在燕麦培养基上禾谷镰刀菌气生菌丝的基因表达模式与侵染过程中的基因表达模式较为相似,而与营养生长菌丝的基因表达模式差异较大。该菌次生代谢物合成特征酶基因和分泌蛋白基因的表达模式均分成3类,即分别在侵染、营养生长和有性生殖过程上调表达,暗示其在生活史不同阶段的特异性功能。  相似文献   

18.
The pathogenic fungus Verticillium fungicola, responsible for dry bubble disease of the common mushroom Agaricus bisporus, causes various symptoms on its host, bubbles (undifferentiated spherical masses), bent and/or split stipes (blowout) and spotty caps. Host DNA quantification by real-time PCR was used to observed relationships between the type of symptom and the relative amount of A. bisporus and V. fungicola in diseased mushrooms. Verticillium fungicola is involved in bubble formation but does not appear to regulate its growth. Quantifications in bubbles and stipe-bubbles (morphology between bubble and sporophore with stipe blowout) showed that the pathogen has no effect on the growth of undifferentiated host hyphae but prevents morphological differentiation if not initiated and stops it when initiated hyphae are affected. Mushrooms with stipe blowout exhibiting both mature and abortive lamellae reveal that V. fungicola has a restricted area of action in host tissues. Despite their visual aspect, healthy looking parts of mushrooms showing spots or stipe blowout were actually contaminated. Discolouration and symptom development are two distinct events. The colour of the tissues was correlated to the percentage of A. bisporus DNA, suggesting that discolouration is not an efficient defensive mechanism, and occurs at the time V. fungicola developed enough to induce tissues necrosis.  相似文献   

19.
Leaves of tomato and barley were inoculated with conidia of Blumeria graminis f. sp. hordei race 1 (R1) or Oidium neolycopersici (KTP-01) to observe cytological responses in search of resistance to powdery mildew. Both conidia formed appressoria at similar rates on tomato or barley leaves, indicating that no resistance was expressed during the prepenetration stage of these fungi. On R1-inoculated tomato leaves, appressoria penetrated the papillae, but subsequent haustorium formation was inhibited by hypersensitive necrosis in the invaded epidermal cells. On the other hand, KTP-01 (pathogenic to tomato leaves) successfully developed functional haustoria in epidermal cells to elongate secondary hyphae, although the hyphal elongation from some conidia was later suppressed by delayed hypersensitive necrosis in some haustorium-harboring epidermal cells. Thus, the present study indicated that the resistance of tomato to powdery mildew fungi was associated with a hypersensitive response in invaded epidermal cells but not the prevention of fungal penetration through host papilla.  相似文献   

20.
Muskmelon (Cucumis melo cv. Temprano Rochet) and autumn squash (Cucurbita maxima) seedlings were inoculated either with Acremonium cucurbitacearum or Monosporascus cannonballus, two of the soil-borne fungi implicated in ‘melon collapse’. Inoculation was achieved in two different ways: by growing the plants in pots containing infested soil to study the histological changes produced in the infected tissues using light microscopy and by growing seedlings in Petri dishes together with fungal colonies in order to observe the colonisation of the plant tissues using scanning electron microscopy. Both muskmelon and autumn squash roots infected with A. cucurbitacearum showed a suberised layer in the epidermis and the outermost layers of the parenchymatic cortex, but these symptoms developed earlier in the muskmelon plants. Muskmelon plants infected by this fungus also presented hypertrophy and hyperplasia, which led to a progressive separation of the vascular bundles in the lower stems of the affected plants. This response was not observed in autumn squash during the study. On the other hand, few histological changes were observed in tissues infected with M. cannonballus and only a slight increase in the size of cortical intercellular spaces was noted in the lower stems of muskmelon plants, and infected autumn squash tissues remained free of these symptoms throughout the study. The scanning electron microscope observations revealed that both fungi were able to colonise the tissues of the two host plants which were studied. A. cucurbitacearum colonised the epidermis and cortex of both muskmelon and autumn squash. The hyphae grew both inter- and intracellularly, and the density of the colonisation decreased within the endodermis. The same colonisation of host plants was observed as a result of M. cannonballus infection. The xylem vessel lumina of both muskmelon and autumn squash showed hyphae and tylose formation as a result of both fungal infections. However, non-fungal structures were detected in the hypocotyl vascular tissues. The present study demonstrates that both fungi are capable of infecting the tissues of a species which is resistant (autumn squash) and a species which is susceptible (muskmelon) to melon collapse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号