首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
通过调查取样的方法对长武塬面不同土地利用条件下(作物地,果园,苜蓿地)土壤水分状况在0~600 cm范围深度内进行对比,结果显示:长武塬区小麦收获期,不同土地利用条件下土壤水分含量总体存在较大差异,其中春玉米地由于上年小麦收获后直到春玉米播种前土地休闲,土壤含水量显著高于其它土地利用方式.其它土地利用条件下土壤平均含水量相对较低,在0~300 cm的范围内含水量分布表现为果园>苜蓿地>小麦地.300 cm以下含水量表现为小麦地>果园>苜蓿地;同时,不同利用条件下土壤水分剖面低湿层的位置深度也不相同,小麦地土壤水分低湿层深度较果园地和多年苜蓿地浅,土壤水分剖面形态与分布特征受利用模式影响显著.  相似文献   

2.
黄土高原水蚀风蚀交错带柠条幼林地土壤水分动态变化   总被引:5,自引:0,他引:5  
沿坡面布点,通过中子仪观测人工柠条幼林坡地小区土壤含水量的垂直变化,并对储水量的时空变化进行模拟和预测。结果表明:柠条幼林地上、中、下不同坡位0~400 cm土壤剖面储水量动态变化趋势一致,即雨季迅速增加,冬季变化较小,春季至下一个雨季初迅速下降。柠条幼林坡地土壤剖面储水量表现为从坡顶至坡底呈逐渐增大的趋势。土壤水分消耗量从坡顶至坡底也呈逐渐增大的趋势。柠条地土壤储水量与坡面位置和时间的关系可用一个二元三次多项式来表达。  相似文献   

3.
在长武塬区的6个地点分别采集农地、10年果园和20年果园10 m深剖面的土样,通过测定和分析不同样地的土壤水分,定量揭示其对土地利用变化的响应。结果表明:农地和10年果园土壤水分具有相似的垂向分布,随深度增加土壤水分含量增大,而20年果园随深度增加呈减小趋势,但6 m以下3种样地土壤水分随深度增加基本不发生变化;农地、10年和20年果园在0~6 m、6~10 m和0~10 m土层平均土壤水分含量分别为17.8%、17.5%和15.8%,20.4%、20.6%和14.8%,18.8%、18.7%和15.4%,与农地相比,20年果园0~6m、6~10m和0~10 m土层减少的土壤水分分别占农地的11%、27%和18%;农地6~10 m土壤储水量为1 063 mm,而转化为果园后随果龄增大而减小,其中10年果园无明显差异,但20年果园减少了291 mm,在该土层形成稳定的低湿层。20年果园6 m以下稳定的低湿层可能减少水分的深层渗漏进而降低地下水补给量,伴随着大面积的农地转化为人工林草,可能会对区域水循环造成影响。  相似文献   

4.
为农作物精准施肥和管理,采用定点定位采样、室内分析的方法,在关中头道塬农田冬小麦生育全过程中,分层监测0~100 cm范围内土壤水分和养分的时空变异过程.结果表明:①土壤中水分和各主要养分主要集中在0~50 cm的剖面上,小麦在返青、拔节、灌浆期对水分和养分的需求量教多,因此,剖面上水分养分在此阶段发生剧烈变动,在时间上出现了水分和养分同步变化现象.土壤速效磷前期比较稳定,返青以后变化幅度较大;土壤速效钾含量在分蘖期保持较高水平,抽穗期含量明显降低.②不同土层的水分和养分的变异性不同.在小麦生育期间表层0~10 cm水分含量变异性最大,很难保证稳定的土壤墒情,该层对于作物生长属于极度危险层;其下各层土壤墒情稳定性逐渐增强,能满足作物生长的要求;土壤的硝态氮和碱解氮最大变异性也出现在0~10 cm范围,证实作物对速效氮的耗竭和氮素的转化过程主要发生在该土层内,随土层深度增加,其变异性减小;速效磷在0~30 cm剖面上变异最大,速效钾在整个剖面上变异性不显著.土壤水分和养分,空间上存在着不够协调的问题,建议应当根据土壤墒情,在旱塬地区进行肥料深施,以缓解水分和养分的空间错位矛盾.  相似文献   

5.
选取位于黄土高原南部的长武王东沟小流域为研究对象,通过对典型样地0~600 cm土壤剖面水分的长期连续测定,系统研究了王东沟小流域土壤水分年内、年际变化的分层特征以及驱动机制。结果表明,土壤水分剖面的时程变化有分层特征,与利用类型关系密切;王东沟小流域0~50 cm土层土壤水分季节变化剧烈,0~150 cm土壤含水量在雨季前(6月)降到最低;与雨季前相比,小麦地12月土壤水分恢复深度可达到460 cm ,而刺槐林地、苹果园和苜蓿地土壤水分恢复深度最大达到260 cm左右;就同一测点比较,2011年刺槐林地和苹果园300~600 cm土壤含水量较2003年减少,而2011年小麦地和荒草地300~600 cm土壤含水量较2003年有所增加。土地利用和地形地貌是驱动王东沟小流域土壤水分变化的主要因素,但是土地利用对深层土壤水分的影响更加显著。  相似文献   

6.
通过对陇中黄土丘陵区不同土地利用类型下土壤水分的定期观测,用烘干法测定了5种土地利用类型的土壤水分,分析了土壤水分在植被生长季的变化。结果表明:土地利用类型对土壤水分的影响差异极显著(P<0.01),土壤含水量及储水量大小顺序为:荒草地>沙棘林地>农地>草地>油松林地;土地利用类型对土壤剖面水分的影响随土层的加深呈增大趋势,土壤剖面水分的变异系数随土层的加深呈减小趋势,并且其含水量变化存在季节差异。不同土地利用类型下土壤水分消耗量及补充量均有差异;土壤剖面储水量的盈亏状况为:农地没有亏缺,荒草地的亏缺量最小,油松林地在40cm以下土层均亏缺。因此,在该区的生态植被恢复过程中,应优先考虑草本和灌木植物,以利于土壤水环境及其永续利用。  相似文献   

7.
通过田间试验,研究了陕西关中塿土区地膜覆盖和秸秆覆盖对表层土壤有机碳、全氮和微生物量碳氮,以及0~200 cm土壤剖面水分及硝态氮分布的影响。结果表明:与不覆盖(NM)相比,白色全膜覆盖(WF)、黑色全膜覆盖(BF)和秸秆覆盖(SM)的表层土壤有机碳分别降低了19.8%、26.3%和20.9%,土壤全氮也分别降低了4.8%、9.6%和10.6%。与NM相比,覆盖处理(WF、BF和SM)可以提高表层(0~20 cm)土壤硝态氮的含量,增加0~40 cm土层的硝态氮累积量(BF的差异不显著),降低40~120 cm土层的硝态氮累积量,但120~200 cm土层的硝态氮累积量差异不显著。SM和BF显著降低0~200 cm土层的硝态氮总累积量,而WF没有显著差异。与NM相比,地膜覆盖(WF和BF)和秸秆覆盖(SM)均可以提高表层0~40 cm土壤水分含量和储水量,但SM的效果低于地膜覆盖;WF可以降低深层土壤水分含量和储水量,而SM和BF与NM无显著差异。0~200 cm土层的总储水量,SM显著高于NM,而地膜覆盖则与NM无显著差异。各覆盖处理均显著降低了表层土壤微生物碳(MBC)和微生物氮(MBN)的含量,与NM相比,MBC分别降低了27.4%、55.4%和66.5%,MBN分别降低了4.6%、4.8%和6.8%。地膜覆盖(WF和BF)和秸秆覆盖(SM)均能够加速土壤有机碳的矿化分解,降低土壤微生物,减少土壤硝态氮的深层淋溶,其对塿土碳氮和水分的长期影响值得进一步研究关注。  相似文献   

8.
黄土丘陵区不同土地利用方式下土壤水分分析   总被引:16,自引:0,他引:16  
采用定位监测法,对地处黄土丘陵区的延安燕沟不同植被类型下土壤水分状况进行了对比分析。结果表明:农林草地土壤水分剖面(0~4 m)存在显著差异,平均土壤含水量由高到低依次为:旱农坡地>草地>柠条灌丛>果园>黄刺玫灌丛>刺槐,与旱农坡地对照分别相差2.04%、2.27%、4.75%、4.8%和5.68%;刺槐、柠条和黄刺玫的土壤水分垂直分布呈现较一致的趋势,表现为上层水分高于下层且差异显著,水分较明显的分界点在100cm左右,其100 cm以上平均土壤湿度分别为10.12%、13.58%和11.89%,100 cm以下分别为8.79%、12.16%和9.07%;同时,不同植被类型下土壤剖面低湿层不同,乔灌地低湿层深度较农地和草地深;土壤水分剖面形态与分层特征受植被利用影响作用显著。  相似文献   

9.
荒漠草原区不同类型草地土壤水分特征研究   总被引:1,自引:0,他引:1  
农牧交错带发展人工草地的关键是土壤水分的适应性,针对年平均降水量250mm的地区,以人工甘草草地、人工苜蓿地、人工苜蓿混播甘草地和天然草地为对象,通过2010年观测,计算各种草地0-100cm土层质量含水量的均值、变异系数,分析土壤水分的空间分布特征;利用土壤水分平衡和土壤分层储水量公式计算不同草地0-100cm土层总储水量,结合试验地生长季降水量变化,分析不同草地储水量与消耗量以及0-20、20-60、60-100cm土层水分均值随植被生长季的变化规律。  相似文献   

10.
铜川市耀州区苹果林土壤水分状况研究   总被引:1,自引:0,他引:1       下载免费PDF全文
测定铜川市耀州区果地、果地~黄姜地和麦地不同类型土壤剖面含水量,研究其0~600 cm之间土壤含水量的变化情况.结果表明,耀州区正常降雨年份果地土层含水量从地表到地下呈现由低到高的变化,200~400 cm范围内出现了发育较弱的轻度干层;果地~黄姜地500 cm以上土壤水分得到了恢复,干层消失;500 cm以下土壤水分得到了补偿,但没有完全恢复.麦地100 cm以下土壤含水量没有明显变化,土层含水量正常.可见,轮作可以使土壤水分在一定范围内得到恢复.最后提出了土壤水分恢复的四点措施.  相似文献   

11.
长武塬区苹果园和农田相互转换的深层土壤水环境效应   总被引:1,自引:0,他引:1  
研究长武塬区苹果园和农田相互转换后0~1 000 cm土壤含水量特征,分析了苹果园土壤干燥化和苹果园转换为农田后土壤水分的恢复效应。结果表明:2、7、17、23、29 a苹果园200~1 000 cm的平均土壤含水量分别为22.8%、21.4%、16.8%、15.4%、14.9%。500~1 000 cm土层中,29 a苹果园平均土壤含水量(14.5%)高于23 a的果园(13.3%);17~29 a的苹果园均表现为轻度干燥化;基于苹果园和农田转换后土壤水分变化情况估算,苹果园最大种植年限为21 a。苹果园转换为农田1、5、10 a后,农田200~1 000 cm土层土壤含水量分别为:15.3%、15.7%和16.2%,恢复到土壤稳定湿度以上的土层厚度分别为140 cm(1 a)、220 cm(5 a)和400 cm(10 a)。  相似文献   

12.
利用黄土丘陵区燕沟流域42场模拟降雨下土壤水分观测数据,研究2种坡度的草地、灌木地在不同经营方式(原状地、刈割地、翻耕地)下的土壤水分对模拟降雨的响应。结果表明:(1)在5次降雨补充下,依据土壤水分的标准差和变异系数,0~100 cm土壤水分受土地经营方式影响表现为:原状草灌地土壤水分可划分为活跃层、次活跃层和相对稳定层;刈割地全剖面为相对稳定层,翻耕地可分为活跃层和相对稳定层。(2)单次降雨事件则随降雨量增加,各经营方式下的水分活跃层逐渐变薄或消失,次活跃层变厚,而相对稳定层变薄,整个土壤剖面水分变化趋于一致。(3)对于受高强度降雨补充后的土壤水分变异性分层,建议采用更加灵敏的土壤水分标准差和变异系数判别标准:活跃层,标准差大于1.4%,变异系数大于12%;次活跃层,标准差1.4%~0.9%,变异系数12%~8%;相对稳定层,标准差小于0.9%,变异系数小于8%。(4)坡度越小土壤水分含量越高,坡度对草灌木地、刈割地的影响较翻耕地显著,且对50~100 cm土层水分影响远大于对表层0~50cm的影响。总之,降雨后土壤水分0~100 cm土层不断增加,且剖面土壤水分逐渐一致,土地经营方式、坡度因素对土壤水分变化强度和在不同深度土层中的表现有显著影响。  相似文献   

13.
风沙区不同土地利用类型的土壤水分灰色关联分析   总被引:8,自引:2,他引:6  
运用灰色关联分析法,对宁夏风沙区盐池县马儿庄村4种不同土地利用类型土壤水分的垂直变化和月变化动态进行分析.结果表明:不同类型土壤水分垂直变化规律不尽相同,中层(30~70 cm)与深层(70~100 cm)土壤水分变化态势的相似程度均较高,但相似程度柠条>天然草场>甘草>苜蓿,表层(0~30 cm)与深层(70~100cm)的灰色关联度最小,土壤水分变化态势差异最大;从各月土壤水分灰色关联度来看,甘草8~10月份土壤水分灰色关联度较大,土壤水分变化态势的相似程度较高,7月份的差异明显;柠条在9月份的灰色关联度达到了最小,其他各月相似度逐渐增大;而苜蓿和天然草场土壤水分灰色关联度波动很大,变化趋势为大-小-大-小.灰色关联分析法可以较好地反映不同土地利用类型土壤水分变化趋势的相似或相异程度.  相似文献   

14.
黄土旱塬垄作覆膜栽培土壤水分及温度变化研究   总被引:2,自引:0,他引:2  
黄土高原雨养农业区水分缺乏是制约农业生产的关键因子。本研究在黄土高原长武塬进行小区试验,通过垄作覆膜(RP)与平作不覆膜(FP)两种处理的对比研究,分析垄作覆膜下玉米生长时期土壤水分与温度的变化,以及降雨事件对于土壤水分的动态影响。结果表明,垄作覆膜在30~60 cm土层土壤水分显著高于平作不覆膜约8%,而平作不覆膜在深层(100~160 cm)土壤水分明显高于垄作覆膜,玉米生长季土体储水量变化垄作覆膜垄与沟在30~60 cm处均高出平作不覆膜20 mm,而在100~160 cm处垄作覆膜比平作不覆膜低25 mm。垄沟覆膜-垄(RPR)土壤表层10 cm处温度较垄沟覆膜-沟(RPF)与平作不覆膜分别高2.01℃和1.91℃。中雨情况下,垄作覆膜降雨土壤入渗深度可达30 cm,平作不覆膜下可以到10 cm,但强降雨事件中垄作覆膜土壤深层入渗受到抑制。降雨强度越大,土壤前期含水量越高,土壤水分峰值产生的时间越短;垄作覆膜由于土壤水分条件的改善使得土壤水分峰值出现时间较平作不覆膜早。垄作覆膜由于垄沟微地形改变使沟内具有集水效应,同时沟内集水对垄上水分存在侧向补充,但时间上存在滞后效应,滞后时间与降雨量和降雨前土壤含水量相关。垄作覆膜能够保水保墒,增加降雨入渗,抑制强降雨事件的深层入渗,抑制"自覆盖"现象的发生,从而对玉米生长具有重要的意义。  相似文献   

15.
不同降雨历时梯田和坡耕地的土壤水分入渗特征   总被引:2,自引:0,他引:2  
以黄土高原丘陵沟壑第三副区庄浪县为例,研究不同降雨历时条件下坡耕地和水平梯田土壤(黄绵土)水分入渗变化特征,应用Hydrus-1D模型对不同降雨条件下的土壤水分入渗进行定量模拟研究。结果表明:(1)与实测数据相比,Hydrus-1D模型模拟降雨后土壤水分的运移较合理。(2)地表层(0~40 cm)土壤含水量变异系数(CV)呈中等变异,即5 d的时间内梯田和坡耕地地表层的土壤含水量变化大,随着土层深度的增加变异系数减小,呈弱变异性。(3)在1.45 mm/min降雨强度下,在23 min时拔节期的小麦坡耕地产生径流,水平梯田在整个过程中没有产生径流。(4)降雨历时为10 min时,在土层深度为0~15 cm,梯田土壤含水量比坡耕地多0.13%~1.65%,在土层深度为30~200 cm,梯田和坡地都没有下渗。降雨历时为20min、30min时,在土层深度为0~20 cm,梯田的土壤含水量比坡耕地的分别多0.05%~2.22%、0.01%~2%。  相似文献   

16.
滴灌棉田土壤水分测点最优布设研究   总被引:2,自引:0,他引:2  
为寻求滴灌棉田土壤剖面水分测点的最优布设方案,2009年在棉花生育期内采用取土烘干法对膜下滴灌棉田不同位置、不同深度土壤质量含水率进行连续监测。利用监测数据分析了膜下滴灌棉田土壤剖面内不同观测点垂直方向上各层次土壤含水率之间的相关关系,并利用R型谱系聚类法对剖面内各观测点8个土壤层次的土壤含水率变量进行分类,筛选出适合膜下滴灌棉田墒情观测的土壤水分测点布设方案。最后利用2007年试验数据对提出的水分测点布设方案进行验证,结果表明,水平方向上距滴灌带0 cm、32.5 cm和50 cm处3个观测点,各观测点垂直方向上0~10 cm、20~30 cm、40~50 cm和60~80 cm深处4个层次12个测点的土壤含水率能较好地反映整个剖面的土壤水分信息,可作为膜下滴灌棉田土壤水分探头的布设点。  相似文献   

17.
科尔沁沙地沙丘-草甸区土壤水、地下水对降雨的响应   总被引:2,自引:0,他引:2  
依据野外观测数据,研究了科尔沁沙地沙丘、草甸两种地貌类型区土壤含水率以及地下水位对降雨的响应规律。结果表明:(1)沙丘表层0-20cm的土壤含水率在降雨开始后20min就基本能够达到最大值,此后开始减小,水分不断向下运移,最大可引起次表层(20-60cm)土壤水分发生一定变化,但不会引起剖面更深层位土壤含水率的变化;2009年丰水期沙丘地下水位变动趋势为总体抬升,但受到降雨及其他因素影响产生一定波动,但影响幅度较小;(2)就草甸地而言,即使是很小的降雨量也会引起草甸地较深层位土壤含水率的变化,雨后草甸地土壤剖面受降雨影响最大的层位是20-40cm,而同时段40-80cm处的土壤含水率波动较小。草甸地地下水位波动大于沙丘,较小的降水也会引起草甸地地下水位的迅速上升,上升持续时间短,而后立即转入下降,属陡涨陡落型。研究成果对沙地的生态保护具有一定的指导作用。  相似文献   

18.
三江源区土地利用方式对土壤氮素特征的影响   总被引:1,自引:0,他引:1  
以三江源区曲麻莱县高寒草甸草原、退化高寒草甸草原、退化高寒草原和人工草地4种土地利用方式为研究对象,研究了不同土地利用方式的土壤全氮、有效氮、铵态氮、硝态氮、无机氮总量及比例,结果表明:4种利用方式土壤的氮素含量均处于较低水平,在0~10 cm土层,土壤全氮与有效氮含量表现出相似的规律性,人工草地最高,退化高寒草甸草原最低。与高寒草甸草原相比,退化高寒草甸草原0~10 cm土层全氮和有效氮含量分别降低了52.4%和76.2%,而10~40 cm土层的全氮和有效氮含量却明显增加。对土壤铵态氮和硝态氮含量的研究结果进一步表明,研究区域土壤中无机氮以硝态氮为主,退化导致0~10 cm土层的铵态氮和硝态氮含量降低,退化和人工种植均导致0~10 cm土层硝态氮含量明显降低,而10~20 cm和20~40 cm土层的硝态氮含量明显升高,且这两个土层之间差异不显著,40~60 cm土层又明显降低。因此,退化和人工种植均导致土壤硝态氮沿土壤剖面淋溶下移,并且淋溶主要发生在0~40 cm深度的土壤中。土壤无机氮总量与硝态氮表现出相似的规律性,对土壤无机氮总量和比例的研究也表明退化加剧了土壤氮素的矿化过程。  相似文献   

19.
干旱季节渭北果园土壤水分时空变化特征   总被引:2,自引:0,他引:2  
针对渭北旱塬干旱季节主要发生在春季到夏初,制约苹果早期生长发育的客观实际,对渭北旱塬苹果园和农田从3月初到5月底,0~100 cm土壤含水量时空变化进行了研究。结果表明:冬春季渭北果园土壤含水量明显高于农田,进入春季随着果树萌发并进入生长旺盛季节,果园土壤水分消耗较小麦农田更为明显,在0~100cm果园土壤耗水量显著,其中5月份0~60 cm土壤水分消耗更加明显。而农田土壤水分消耗层主要在0~30 cm。相对于农田而言,冬春季渭北果园土壤表现出极为明显的保墒性,有助于缓解春旱的威胁;而春季到夏初则表现为极为显著的土壤耗水性,土壤干燥化趋势明显,5月初为果园土壤水分管理的关键时期。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号