首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neofabraea vagabunda is the prevalent cause of bull's eye rot, one of the main postharvest diseases of apple, in many producing areas, but its biology has not been studied in detail. The molecular identification, by DNA sequencing of the β‐tubulin region, of 41 isolates collected from apples showing bull's eye rot in the Emilia‐Romagna region confirmed N. vagabunda as the main species in Italy. A biological and morphological characterization of N. vagabunda isolates was performed in vitro. Assays at temperatures ranging from 0 to 30 °C carried out on 10 isolates demonstrated: (i) a marked influence of temperature on colony morphology, conidial production, conidial size and mycelial growth, showing the cold‐tolerant character of N. vagabunda; and (ii) that culture at 15 °C on tomato agar (TA) for 14 days is a rapid and reliable method to favour pathogen conidial production. Trials performed on 38 isolates using these incubation conditions recorded the presence of two N. vagabunda morphotypes, differing for colony morphology, conidial size, conidiomata formation and temperature requirement. The alkalizing ability of the pathogen during growth on TA was also demonstrated for the first time. The pathogenicity of 25 N. vagabunda isolates was proved in vivo on artificially infected Cripps Pink apples. A pH increase was also recorded in apple tissue infected by N. vagabunda isolates (on average 0.2 and 0.3 units of pH after 60 and 120 days of incubation, respectively), suggesting that the N. vagabunda transition from quiescence to necrotrophic colonization in apples could involve the secretion of alkalizing compounds.  相似文献   

2.
Neofabraea vagabunda, causing bull’s eye rot, produces notable loss during cold storage of apples growing in cool humid regions. The infection initiates in the orchard, but the pathogen lives quiescently in fruit for some months before causing the symptoms of the disease. In vivo and in vitro assays were carried out to gain knowledge on the influence of fruit volatile organic compounds (VOCs) in N. vagabunda development and define volatile markers for pathogen detection, using SPME/GC-MS, PTR-ToF-MS analysis and light microscopic observations. This study reports that: (i) the main VOCs of Cripps Pink apple (highly susceptible to bull’s eye rot) are degraded during the conidial germination of N. vagabunda, stimulating pathogen hyphal growth towards the host; (ii) first disease symptoms appear when fruit releases VOCs related to senescence, which also stimulate pathogen hyphal growth; (iii) VOCs typical of ripe-senescent fruit are also emitted by infected fruit during N. vagabunda quiescence, and methanol and ethanol are the earliest markers of bull’s eye rot; and (iv) the in vitro volatile metabolism of Botrytis cinerea, Penicillium expansum and Colletotrichum fioriniae has similarities with that of N. vagabunda, but the volatile profile of each pathogen is distinguishable. Overall, this study provides novel knowledge on fruit–fungus interaction and insights for the development of tools for early disease detection in packing houses.  相似文献   

3.
Sphaeropsis pyriputrescens is the cause of Sphaeropsis rot in apples and pears. In this study, effects of temperature, wetness duration, relative humidity (RH), dryness, and interrupted wetness duration on conidial germination of the fungus were evaluated. Conidial germination and germ tube elongation occurred at temperatures from 0°C to 30°C. The optimum temperature for germination and germ tube elongation appeared to be 20°C, at which a minimum wetness period of 5 h was required. Conidia germinated at RH as low as 92% after 36 h at 20°C, but not at 88.5% RH. The effect of dry periods on germination depended on RH. Conidial germination at 85% RH was higher than that at 25% RH within a 4-h dry period, after which time no difference was observed. Less than 10% conidia germinated after a 10-day dry period at both 20°C and 28°C. Conidial germination decreased as the wetness duration prior to dryness increased. Conidia wetted for 6 h prior to dryness died within a 1-h dry period. After a 12-h dry period, no or few conidia germinated at 25% RH, whereas 3% to 10% of the conidia germinated at 85% RH and no further decrease was observed as the dry period increased. The results contribute to our understanding of conditions required for conidial germination of S. pyriputrescens and infection of fruit leading to Sphaeropsis rot.  相似文献   

4.
Podosphaera xanthii and Golovinomyces orontii are the causal agents of cucurbit powdery mildew. The effect of temperature on conidial germination, infection and sporulation was studied under controlled conditions. Conidia were inoculated on cucumber leaf discs, and incubated at six constant temperatures (from 10 to 35 °C in 5 °C steps) for 3 to 72 h to evaluate conidial germination and infection, and for 6–15 days to evaluate sporulation intensity. Germination took place at all tested temperatures, but was close to zero at 35 °C. The longest germ tubes measured in this experiment were 141.74 μm for the secondary germ tube of Pxanthii at 20 °C after 48 h of incubation, and 67.92 μm for G. orontii for the primary germ tube at 20 °C after 48 h of incubation. The optimal temperatures for conidial germination, infection and sporulation were 24.4, 25.7 and 22.3 °C, respectively, for P. xanthii, and 17.9, 17.3 and 14.9 °C, respectively, for G. orontii. Equations were developed to describe conidial germination with a coefficient of determination (R2) of 0.85 and 0.90 for P. xanthii and Gorontii, respectively. Infection equations resulted in R2 of 0.94 and 0.93 for Pxanthii and Gorontii, respectively; and for sporulation, R2 of 0.75 and 0.76 for P. xanthii and G. orontii respectively, as a function of temperature. These results can be used to develop models for the risk of cucurbit powdery mildew under field conditions.  相似文献   

5.
不同杀菌剂对黄瓜靶斑病菌的毒力作用特性比较   总被引:4,自引:2,他引:2  
为筛选防治黄瓜靶斑病的有效药剂,采用菌丝生长速率法、孢子萌发法和芽管伸长法测定了19种杀菌剂对黄瓜靶斑病菌的毒力,探究了4种毒力较高杀菌剂对病原菌菌丝形态的影响。结果表明:氟啶胺、吡唑萘菌胺、咯菌腈和四霉素对黄瓜靶斑病菌菌丝生长、孢子萌发和芽管伸长各生长发育阶段均有较强的抑制活性,其中,4种药剂抑制菌丝生长的平均EC50值分别为0.516 3、1.538、1.605和0.648 2 mg/L,抑制孢子萌发的平均EC50值分别为0.164 4、1.359、1.127和0.002 5 mg/L,抑制芽管伸长的平均EC50值分别为0.189 6、0.144 7、0.060 4和0.001 5 mg/L;啶酰菌胺、百菌清和肟菌酯3种不同作用机制杀菌剂对黄瓜靶斑病菌孢子萌发和芽管伸长的抑制活性较强,3种药剂抑制孢子萌发的平均EC50值分别为1.564、0.373 0和0.021 3 mg/L,抑制芽管伸长的平均EC50值分别为0.629 5、0.233 4和0.405 0 mg/L,但对菌丝生长的抑制作用较弱,平均EC50大于16 mg/L;氟啶胺、吡唑萘菌胺、咯菌腈和四霉素可引起黄瓜靶斑病菌菌丝不同程度的异常生长,主要表现为菌丝隔膜间距变小、菌丝节间肿大、主菌丝上二次分枝发生频繁、菌丝变形黏连、菌丝新分枝处生长受抑制或分生孢子生长变形。研究表明,氟啶胺、吡唑萘菌胺、咯菌腈和四霉素对黄瓜靶斑病菌具有较高的毒力,在黄瓜靶斑病的田间防治中具有较好的开发应用潜力。  相似文献   

6.
Olive leprosy, caused by the fungus Phlyctema vagabunda, is a classic fruit rot disease widespread in the Mediterranean basin. From 2009 to 2013, new disease symptoms consisting of small circular necrotic leaf lesions, coin branch canker and shoot dieback were observed in Spanish and Portuguese olive orchards showing intense defoliation. Phlyctema‐like anamorphs were consistently isolated from leaves and shoots with symptoms. Representative isolates from affected leaves, shoots and fruits were characterized based on morphology of colonies and conidia, optimum growth temperature and comparison of DNA sequence data from four regions: ITS, tub2, MIT and rpb2. In addition, pathogenicity tests were performed on apple and olive fruits, and on branches and leaves of olive trees. Maximum mycelial growth rate ranged between 0.54 and 0.73 mm per day. Conidia produced on inoculated apple fruits showed slight differences in morphology among the representative fungal isolates evaluated. Phylogenetic analysis clustered all of the Phlyctema‐like isolates in the same clade, identifying them as Phlyctema vagabunda. On fruits, influence of wounding, ripening and cultivar resistance was studied, with cv. Blanqueta being the most susceptible cultivar. On branches, a mycelial‐plug inoculation method reproduced olive leprosy symptoms and caused shoot dieback. On leaves, Koch's postulates were fulfilled and the pathogen caused characteristic necrotic spots and plant defoliation. This is the first time that the pathogenicity of P. vagabunda in olive leaves has been demonstrated.  相似文献   

7.
Apple scab caused by Venturia inaequalis is a major disease in apple production. Epidemics in spring are initiated by ascospores produced on overwintering leaves whereas epidemics during summer are driven by conidia produced on apple leaves by biotrophic mycelium. Fungal colonisers of sporulating colonies of V. inaequalis were isolated and their potential to reduce the production of conidia of V. inaequalis was evaluated on apple seedlings under controlled conditions. The four most effective isolates of the 63 screened isolates were tested subsequently under Dutch orchard conditions in 2006. Repeated applications of conidial suspensions of Cladosporium cladosporioides H39 resulted in an average reduction of conidial production by V. inaequalis of approximately 40%. In 2007, applications of conidial suspensions of C. cladosporioides H39 reduced conidial production by V. inaequalis by 69% on August 6 and by 51% on August 16, but no effect was found on August 20. However, viability of available conidia of C. cladosporioides H39 was low at the end of the experiment. Epiphytic and endophytic colonisation by Cladosporium spp. of leaves treated during the experiment with C. cladosporioides H39 was significantly higher than on control leaves sampled 6 weeks after the last application. It is concluded that C. cladosporioides H39 has promising potential as a biological control agent for apple scab control. More information is needed on the effect of C. cladosporioides H39 on apple scab epidemics as well as on mass production, formulation and shelf life of conidia of the antagonist.  相似文献   

8.
The effect of hot water treatment (HWT) to control peach brown rot was investigated. Peaches were dipped in water at 60°C for 60 s and artificially inoculated with Monilinia fructicola conidia. HWT failed to control brown rot if applied before inoculation and microscopic observations revealed a stimulatory effect on germ tube elongation of M. fructicola conidia placed immediately after HWT on the fruit surface, compared to the control. The influence of fruit volatile emission due to HWT was performed on the pathogen conidia exposed to the headspace surrounding peaches. The results showed an increase of M. fructicola conidial germination ranging from 33 to 64% for cultivars Lucie Tardibelle and Red Haven heat‐treated peaches, respectively, compared to the control. The volatile blend emitted from heat‐treated fruit was analysed by solid‐phase microextraction/gas chromatography‐mass spectrometry (SPME/GC‐MS) and proton transfer reaction‐time of flight‐mass spectrometry (PTR‐ToF‐MS). Fifty compounds were detected by SPME/GC‐MS in volatile blends of cv. Lucie Tardibelle peaches and significant differences in volatile emission were observed among heated and control fruit. Using PTR‐ToF‐MS analysis, acetaldehyde and ethanol were detected at levels 15‐ and 28‐fold higher in heated fruit compared to unheated ones, respectively. In vitro assays confirmed the stimulatory effect (60 and 15%) of acetaldehyde (0·6 μL L?1) and ethanol (0·2 μL L?1) on M. fructicola conidial germination and mycelial growth, respectively. The results showed that volatile organic compounds (VOCs) emitted from heat‐treated peaches could stimulate M. fructicola conidial germination, increasing brown rot incidence in treated peaches when the inoculation occurs immediately after HWT.  相似文献   

9.
The Botryosphaeriaceae is a species‐rich family that includes pathogens of a wide variety of trees, including Eucalyptus species. Symptoms typical of infection by the Botryosphaeriaceae have recently been observed in Eucalyptus plantations in South China. The aim of this study was to identify the Botryosphaeriaceae associated with these symptoms. Isolates were collected from branch cankers and senescent twigs of different Eucalyptus spp. All isolates resembling Botryosphaeriaceae were separated into groups based on conidial morphology. Initial identifications were made using PCR‐RFLP fingerprinting, by digesting the ITS region of the rDNA operon with the restriction enzymes CfoI and KspI. Furthermore, to distinguish isolates in the Neofusicoccum parvum/N. ribis complex, a locus (BotF15) previously shown to define these species, was amplified and restricted with CfoI. Selected isolates were then identified using comparisons of DNA sequence data for the ITS rDNA and translation elongation factor 1‐alpha (TEF‐1α) gene regions. Based on anamorph morphology and DNA sequence comparisons, five species were identified: Lasiodiplodia pseudotheobromae, L. theobromae, Neofusicoccum parvum, N. ribis sensu lato and one undescribed taxon, for which the name Fusicoccum fabicercianum sp. nov. is provided. Isolates of all species gave rise to lesions on the stems of an E. grandis clone in a glasshouse inoculation trial and on the stems of five Eucalyptus genotypes inoculated in the field, where L. pseudotheobromae and L. theobromae were most pathogenic. The five Eucalyptus genotypes differed in their susceptibility to the Botryosphaeriaceae species suggesting that breeding and selection offers opportunity for disease avoidance in the future.  相似文献   

10.
Shoot blights are common diseases of peach trees in Greece. This study is the first report of a shoot blight and canker disease of peach in Greece caused by the fungus Phoma glomerata (Corda) Wollenw. & Hochapfel. The pathogen caused distinct cankers with abundant gumming on shoots of peach trees. The rate of development of P. glomerata in vitro was reduced as temperatures increased from 25°C to 30°C, decreased from 25°C to 15°C, and was totally inhibited at 35 and 10°C. The rate of conidial germination and the germ tube elongation in vitro was reduced as temperatures increased from 25°C to 35°C, decreased from 25°C to 10°C, and was totally inhibited at 2–4°C. Pathogenicity tests showed that 24 peach and nectarine cultivars grown in Imathia Perfecture, Greece, were equally susceptible to P. glomerata. The fungicides thiophanate methyl, carbendazim, and tebuconazole were evaluated against the development of P. glomerata and disease symptoms. All fungicides inhibited the growth and conidial germination of P. glomereta and disease symptoms, and all 30 isolates tested were sensitive to the above fungicides. The disease caused by P. glomerata could be a threat to peach cultivation in Greece and its management should be investigated in the field.  相似文献   

11.
Colletotrichum coccodes is currently being investigated as a mycoherbicide against the weed velvetleaf (Abutilon theophrasti). Two isolates ofPseudomonas spp. (Ps2 and Ps5) reduced the percentage of germ tubes and increased appressorial formation ofC. coccodes on detached leaves of velvetleaf. A study was conducted to see whether this effect could be attributed to competition for nutrients or iron betweenC. coccodes andPseudomonas spp. Ps2 and Ps5 had no effect on early spore germination, but reduced the percentage of germ tubes at 24 and 30 h, compared to the nontreated control. This reduction was diminished by the addition of nutrients but not Fe3+. Ps2 and Ps5 stimulated the formation of dark-coloured appressoria without germ tubes (AWGT), but this stimulation was diminished by the addition of nutrients or Fe3+. Germ tube branching at 30 h was also inhibited by the bacteria, but was not diminished by the addition of nutrients or iron. EDTA stimulated conidial germination at 10 h, which was reduced by the addition of Fe3+. However, EDTA did not stimulate the formation of appressoria (AWGT). These results suggest that the reduction in the percentage of germ tubes and the increase in the percentage of appressoria induced by the bacteria may be due to the competition for carbon or nitrogen. Iron competition may also be involved in the stimulation of appressorial formation, but not in the reduction in germ tube percentage and branching. Phylloplane bacteria may compete for carbon, nitrogen and iron, limiting the saprophytic phase of the pathogen on the phylloplane and accelerating the development of the parasitic phase. This may enhance the field efficacy ofC. coccodes as a biocontrol agent against velvetleaf.  相似文献   

12.
Post‐harvest diseases of apple and pear cause significant losses. Neofabraea spp. and Cadophora spp. infect fruits during the growing season and remain quiescent until disease symptoms occur after several months in storage. Epidemiological knowledge of these diseases is limited. TaqMan PCR assays were developed for quantification of N. alba, N. perennans, C. malorum and C. luteo‐olivacea in environmental samples. Various host tissues, dead weeds and grasses, soil and applied composts were collected in 10 apple and 10 pear orchards in May 2012. Neofabraea alba was detected in 73% of samples from apple orchards and 48% from pear orchards. Neofabraea perennans was present in a few samples. Cadophora luteo‐olivacea was detected in 99% of samples from apple orchards and 93% from pear orchards, whilst C. malorum was not detected in any sample. In apple orchards, highest concentrations of N. alba were found in apple leaf litter, cankers and mummies, and of C. luteo‐olivacea in apple leaf litter, mummies and dead weeds. In pear orchards, N. alba and C. luteo‐olivacea were found in highest concentrations in pear leaf litter and in dead weeds. Substrate colonization varied considerably between orchards. The temporal dynamics of pathogens was followed in four apple orchards and four pear orchards. In apple orchards the colonization by pathogens decreased from April until August and increased from September until December. This pattern was less pronounced in pear. Knowledge on population dynamics is essential for the development of preventative measures to reduce risks of fruit infections during the growing season.  相似文献   

13.
Conidia of Alternaria linicola germinated on both water agar and linseed leaves (detached or attached) over a wide range of temperatures (5–25°C) by producing one to several germ tubes. At temperatures between 10°C and 25°C and under continuous wetness in darkness, germination started within 2 h after inoculation and reached a maximum (100%) by 8 to 24 h, depending on temperature. At 5°C, the onset of germination was later and the rate of germ tube elongation was slower than that at 10–25°C. During germination, conidia of A. linicola were sensitive to dry interruptions of wet periods and to light. Short (2 h) or long (12 h) dry interruptions occurring at any time between 2 and 6 h after inoculation stopped conidial germination and germ tube elongation. With continuous wetness, light periods 2 to 12 h long immediately after inoculation inhibited conidial germination, which was resumed only when a dark period followed subsequently. However, germination and germ tube elongation of A. linicola conidia stopped and the viability of the conidia was lost during exposure to dry light periods immediately after inoculation with spore suspensions. Penetration of leaves by A. linicola was evident after 12 h and occurred mainly through epidermal cells (direct) with or without the formation of appressoria.  相似文献   

14.
This study investigated the use of cold plasma to reduce the in vitro growth of two postharvest fungal plant pathogens, Colletotrichum alienum and C. fioriniae, isolated from avocados. Cold plasma (CP) was used to treat pure cultures and conidial suspensions of both pathogens, for 180 or 360 s, in either open or sealed environments from varying distances. In an open environment, the 360 s treatment at a distance of 5 cm reduced the colony growth of freshly inoculated cultures to less than 2 mm/day compared to the control of more than 8 mm/day, and treatment of conidial suspensions resulted in almost 100% reduction of conidial germination. In the same environment, the 180 s CP treatment did not significantly reduce the colony growth of fresh or actively growing cultures, but did suppress the germination of conidia by up to 80%. In a sealed environment, the 360 s CP treatment also effectively reduced the growth of freshly inoculated cultures, with no growth for some isolates. Production of reactive oxygen and nitrogen species was observed during treatment, and these may have contributed to the reduction in growth and germination. These results demonstrate the potential of CP for the control of two Colletotrichum species.  相似文献   

15.
钙盐协同枯草芽孢杆菌对苹果采后炭疽病的控制   总被引:1,自引:0,他引:1       下载免费PDF全文
为控制果实采后病害,采用液体共培养、平板菌落计数和活体侵染等方法,研究钙盐和枯草芽孢杆菌对苹果炭疽菌的作用机制和对苹果炭疽病的控制效果.结果显示,钙盐延缓了枯草芽孢杆菌的增殖速率和衰亡期细胞死亡速率,即延长了枯草芽孢杆菌世代周期;钙盐协同枯草芽孢杆菌可抑制苹果炭疽菌菌丝体干重、孢子萌发率和芽管长度,其抑制率分别为54.75%、88.99%和45.88%,抑制效果显著高于钙盐和枯草芽孢杆菌的单独作用,同时推迟了苹果炭疽病的发病时间,抑制了病斑的扩展和分生孢子盘的发育;钙盐协同枯草芽孢杆菌对苹果炭疽病的防治效果为55.53%,明显好于各自的单独作用.  相似文献   

16.
Species of Botryosphaeriaceae are important wound pathogens of grapevines as causal agents of botryosphaeria dieback, but the behaviour of their conidia pre‐infection is unknown and may be important for disease development. Adhesion properties of conidia were investigated for Botryosphaeria dothidea, Neofusicoccum luteum and N. parvum on substrata with different affinities for water. Greatest adhesion on any surface was reached after 5 min for isolates N. luteum MM558, B. dothidea 007 and N. parvum G652 (53·1, 54·0 and 50·6%, respectively) and for N. luteum isolate CC445 after 20 min (61·4%). As conidia adhered well to all artificial substrata, it appeared as if the attachment process was nonspecific. Overall, surface wettability did not play a major role in the adhesion of conidia. Spore surface proteins appeared to play a role in the adhesion process because treatment of conidia of N. luteum MM558 with a protease completely prevented adhesion. Histochemical labelling of conidia and germlings with Coomassie brilliant blue (specific for proteins) was positive for all isolates, with a blue ‘halo’ often seen surrounding conidia or near the germ tube emergence point after incubation times conducive to germination. Alcian blue also stained material surrounding conidia after longer incubation times, which indicated that mucopolysaccharide and protein production may be involved in a second phase of adhesion.  相似文献   

17.
Early blight caused by Alternaria solani is a highly destructive disease of potatoes. Control of early blight mainly relies on the use of preventive fungicide treatments. Because of their high efficacy, azoxystrobin and other quinone outside inhibitors (QoIs) are commonly used to manage early blight. However, loss of sensitivity to QoIs has previously been reported for A. solani in the United States. Two hundred and three A. solani field isolates collected from 81 locations in Germany between 2005 and 2011 were screened for the presence of the F129L mutation in the cytochrome b gene; of these, 74 contained the F129L mutation. Sequence analysis revealed the occurrence of two structurally different cytb genes, which differed in the presence (genotype I) or absence (genotype II) of an intron, with genotype I being the most prevalent (63% of isolates). The F129L mutation was detected only in genotype II isolates, where it occurred in 97%. Sensitivity to azoxystrobin and pyraclostrobin was determined in conidial germination assays. All isolates possessing the F129L mutation had reduced sensitivity to azoxystrobin and, to a lesser extent, to pyraclostrobin. Early blight disease severity on plants treated with azoxystrobin was significantly higher for A. solani isolates with reduced fungicide sensitivity in the conidial germination assay compared with sensitive isolates. Data suggest an accumulation of F129L isolates in the German A. solani population over the years 2009–2011. It is assumed that the application of QoIs has selected for the occurrence of F129L mutations, which may contribute to loss of fungicide efficacy.  相似文献   

18.
Heat treatment represents an alternative method to fungicides to control latent fruit pathogens, such as Cadophora luteo-olivacea of kiwifruit. This study reports the efficacy of different hot water (HW) and hot air (HA) treatments (45, 50, 55, 65, and 70°C with durations of 10, 15 or 20, 5 or 10, 5, and 3 min, respectively) on the conidial and mycelial growth of fungal isolates by in vitro assays. Both treatments at 70°C were the most effective in inhibiting conidial and mycelial growth of C. luteo-olivacea isolates. Treatment efficacy for HW and HA was on average 88% and 71%, respectively, on mycelial growth, and 100% and 91.3%, respectively, on conidial growth. A significant reduction of xylanase and pectinase enzyme activities of the isolates was detected after HW and HA treatment (70°C × 3 min). In most cases, both treatments showed a total reduction, sometimes varying with the target isolate. HA treatment was the most efficient treatment for reducing the skin pitting incidence in in vivo experiments, showing an average efficacy of 46.6%. Results show that heat treatments are effective against C. luteo-olivacea, but the main challenge will be to develop the optimal time × temperature combinations.  相似文献   

19.
In darkness, most Erysiphe pisi conidia responded rapidly to contact with a hydrophobic artificial substratum and released extracellular material (ECM) in the same way as on pea cuticle. On this substratum and barley leaf epidermis, conidia then produced a germ tube that emerged close to the substratum, contacted it, and differentiated an appressorium. By contrast, on a hydrophilic substratum, ECM release and germination were delayed and infrequent, and germ tubes often emerged and faced away from the substratum toward vertical light, thereby failing to make contact and form appressoria. This finding supported the hypothesis that ECM release is involved in both triggering germination and sensing substratum contact. Exposure to white light dramatically affected the germ tube emergence site so most emerged from a site in the conidial wall facing the light. Lateral light did not affect the frequency of germ tubes making substratum contact; but when lit from above, most germ tubes emerged up, facing away from the substratum. The germ tubes formed in light were longer than those formed in darkness, but no phototropism was found for the elongating tubes. Examination of Blumeria graminis indicated that its conidia and germ tubes are insensitive to white light.  相似文献   

20.
Cold plasma, an ionized gas produced by applying an electrical current to air, can be used to produce plasma-activated water (PAW), which has excellent antimicrobial properties. In this study PAW was applied to conidia of Colletotrichum alienum to investigate its impact on conidial germination in vitro. PAW was produced by treating tap, deionized, or distilled water with cold plasma for 30 or 60 min to produce PAW30 or PAW60, each of which was then incubated for up to 24 hr with a conidial suspension of C. alienum in a ratio of 1:1, 1:2, or 1:3 (conidial suspension:PAW), and the percentage germination measured. The greatest reduction in germination occurred when conidia were incubated with PAW60 produced from deionized water or distilled water, for all ratios. For PAW30, deionized water was the most effective for all three ratios, and on this basis, deionized water was selected for all further experiments. PAW produced from smaller volumes of water and at shorter distances from the cold plasma source was more effective at reducing germination. Treatment of conidia with acidified water was not as effective as PAW at inhibiting germination. Nitrates and nitrites were present in the PAW in varying concentrations and may have contributed to the inhibition of germination. PAW retained activity and reduced germination even after storage for 15 days. These findings demonstrate the potential of PAW as a novel treatment for postharvest fungal pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号