首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Desert phreatophytes are greatly dependent on groundwater, but how their root systems adapt to different groundwater depths is poorly understood. In the present study, shoot and root growths of Alhagi sparsifolia Shap. seedlings were studied across a gradient of groundwater depths. Leaves, stems and roots of different orders were measured after 120 days of different groundwater treatments. Results indicated that the depth of soil wetting front and the vertical distribution of soil water contents were highly controlled by groundwater depths. The shoot growth and biomass of A. sparsifolia decreased, but the root growth and rooting depth increased under deeper groundwater conditions. The higher ratios of root biomass, root/shoot and root length/leaf area under deeper groundwater conditions implied that seedlings of A. sparsifolia economized carbon cost on their shoot growths. The roots of A. sparsifolia distributed evenly around the soil wetting fronts under deeper groundwater conditions. Root diameters and root lengths of all orders were correlated with soil water availabilities both within and among treatments. Seedlings of A. sparsifolia produced finer first- and second-order roots but larger third- and fourth-order roots in dry soils. The results demonstrated that the root systems of desert phreatophytes can be optimized to acquire groundwater resources and maximize seedling growth by balancing the costs of carbon gain.  相似文献   

2.
紫花苜蓿Medicago sativa是一种优质的多年生豆科牧草,素有"牧草之王"的美称。根腐病是紫花苜蓿生产中的主要限制因素,可抑制植物生长,严重时导致植物死亡,造成巨大的经济损失。丛枝菌根真菌(Arbuscular mycorrhizal fungi,AM)广泛存在于农业系统中,可与植物根系形成内生菌根,提高宿主植物对营养元素和水分的吸收,增加植物产量和抗逆性。本研究以紫花苜蓿为试验材料,探究接种AM真菌摩西球囊霉Glomus mosseae对紫花苜蓿根腐病烟色织孢霉Microdochium tabacinum的影响。结果表明,摩西球囊霉可抑制烟色织孢霉的侵染,植株发病率降低了20.78%;病原菌的侵染显著抑制紫花苜蓿根系生长和养分吸收,植物地下生物量降低12.87%,根长降低20.52%,根系P含量降低了18.29%,丙二醛(MDA)含量提高了12.78%;AM真菌可以缓解病原菌的危害,促进紫花苜蓿生长,与不接种AM真菌的处理相比,地上生物量、地下生物量、根长分别提高了47.77%,38.67%和20.67%;防御酶超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性分别提高了42.25%、26.05%和33.62%;地上部分和地下部分P含量分别提高了58.63%和75.38%。  相似文献   

3.
A HUSSNER 《Weed Research》2009,49(5):506-515
Crassula helmsii , Hydrocotyle ranunculoides , Ludwigia grandiflora and Myriophyllum aquaticum are four well known invasive aquatic plants in European waters. In this study, plant growth at different nutrient availabilities, regeneration capacity and photosynthesis were investigated. Results show high relative growth rates (RGR) of the species of up to 0.132 ± 0.008 g g−1 dry weight (dw) day−1 ( H. ranunculoides ) and a significant increase in RGR with increasing nutrient availability. All species show a high regeneration capacity and the ability to form new shoots from single nodes, even though it differs between the species. Ludwigia grandiflora and M. aquaticum also show regeneration from single leaves. Species differed in maximal amounts, and in temperature and light optima of net assimilation rates: H. ranunculoides leaves reach maximum photosynthetic rates of up to 3500 μmol CO2 × h−1 g−1 dw, L. grandiflora (leaves) up to 2200 μmol CO2 × h−1 g−1 dw, M. aquaticum (shoots) 400   μmol CO2 × h−1 g−1 dw and C. helmsii (shoots) up to 200 μmol CO2 × h−1 g−1 dw. Hydrocotyle ranunculoides , L. grandiflora and M. aquaticum preferred high light intensity and high temperatures, whilst C. helmsii was negatively affected by intense sunlight. Summarising, it can be assumed that at least H. ranunculoides , L. grandiflora and M. aquaticum can grow well under current and likely future central European climate conditions.  相似文献   

4.
不同根区温度对冬小麦生长发育及养分吸收的影响   总被引:9,自引:1,他引:8  
以Hoagland营养液为介质,采用自制的恒温培养系统研究了不同根区温度对冬小麦生长发育以及N、P、K养分吸收的影响。结果表明:小麦冬前至返青期低温处理明显抑制根系发育,根长、根体积、根系生物量、叶面积、地上部生物量、养分累积量均比常温处理显著降低,其中越冬前低温处理对地上部的影响大于对根系的影响,而返青期低温处理对根系的影响大于地上部;越冬前和越冬期高温促进了根系生长,但地上部生物量和养分累积量呈降低趋势,返青期高温抑制了根长和根体积的增加,但有促进地上部生长的作用。  相似文献   

5.
膜下滴灌水氮对棉花根系形态和生物量分配变化的影响   总被引:1,自引:0,他引:1  
通过挖掘法,研究了膜下滴灌不同生育期棉花根系形态特征和生物量分配对不同水氮的响应。结果表明:花铃期,正常灌水促进了根系和地上部的生长,根、地上部干重、根表面积指数、平均根长密度显著增加,根冠比下降。无论灌水量如何,施氮促进了根系和地上部的生长,但对地上部的促进作用远大于根系,表现为根冠比下降。吐絮期,在低氮条件下,灌水量增加,根干重、地上部干重显著增加。在中氮和高氮条件下,不同的灌水量对根干重没有影响。无论施氮量如何,灌水量增加,平均根长密度、根表面积指数显著下降,地上部干重明显增加,根冠比下降。水分胁迫时,中氮的根干重明显高于低氮和高氮处理,而施氮对地上部干重,平均根长密度的影响不明显,根表面积有降低的趋势。正常灌水时,施氮量增加,根干重、根长密度、根表面积指数显著降低,地上部干重以中氮水平最高。花铃期至吐絮期,根干重随生育期的延长明显增加。水分胁迫条件下,平均根长密度、根表面积指数随生育期的延长有增加的趋势。正常灌水条件下,平均根长密度、根表面积指数随生育期的延长下降。  相似文献   

6.
Y Wang  Z W Fan  Y D Shen  X X Li  Y Liu  Q Q Huang 《Weed Research》2019,59(6):419-426
Invasive plants may be more plastic than non‐invasive plants and maintain high fitness under various environmental conditions. Previous studies mainly focused on the comparisons between invasive and native plants, and comparisons between highly invasive and less invasive exotic species are still relatively rare, especially for comparisons at the subspecies level. This study examined the effects of nutrient addition and shading on the performance of the highly invasive Mimosa invisa and its less invasive subspecies M. invisa var. inermis under either isolated or competitive conditions. Nutrient addition increased biomass and plant height and decreased root‐to‐shoot ratio (R/S). Shading decreased biomass and R/S and increased plant height. Under isolated conditions, the two invaders did not differ in R/S, plant height and plasticity of these traits in response to nutrient addition or shading, and the two invaders also did not differ in biomass production under each of the nutrient and light treatments. When the two invaders competed with each other, M. invisa outcompeted M. invisa var. inermis under high soil nutrient conditions, and the two invaders did not differ in performance under other growth conditions. Thus, only considering competition may we find out the difference between highly invasive species and their closely related, less invasive subspecies. Management of M. invisa should focus on habitats with high soil nutrient availability, in which M. invisa is more likely to dominate.  相似文献   

7.
水分胁迫持续时间对冬小麦根冠生物量累积的影响   总被引:1,自引:0,他引:1  
为了解冬小麦根、冠对土壤含水量变化的响应,对不同水分条件下温室盆栽冬小麦作了分析研究。该试验包括七个水分状态,充分供水A处理(75%~100?,FC为田间持水量),中度胁迫B处理(55%~65?)和重度胁迫C处理(35%~45?)以及分蘖期开始中度、重度胁迫到孕穗期复水的BA1、CA1处理和抽穗期复水的BA2、CA2处理。试验结果表明:分蘖期开始的水分胁迫无论何时恢复供水都不影响冬小麦根、冠生长过程的总趋势;但随胁迫程度、胁迫持续时间的增加,胁迫期内根、冠的相对生长率,根、冠总重均降低,但根重占有量增大,且水分供应量的减少和胁迫时间的延长使冬小麦生育周期提前结束;随胁迫的增加,胁迫时间的延续,最大根重减小,但较大根重维持的时间延长;当复水后,各处理对复水存在不同程度的滞后效应和激发补偿生长,导致短期胁迫的根重占有量小于长期胁迫处理,中度胁迫小于重度胁迫,冠重也随之改变。造成此现象的原因:水分胁迫影响植株的功能,但自适应能力的作用促使分配于根系的同化物质增加,改善和提高根系的吸水能力,缓减植株由于缺水造成损失;对于供水超过75?的植株,生育后期的冠重占有量较小,根重较大则归因于生长过程已形成的庞大根系。  相似文献   

8.
Plant phenotypic plasticity is a common feature that is crucial for explaining interspecific competition, dynamics and biological evolution of plant communities. In this study, we tested the effects of soil CaCO_3(calcium carbonate) on the phenotypic plasticity of a psammophyte, Artemisia ordosica, an important plant species on sandy lands in arid and semi-arid areas of China, by performing pot experiments under different CaCO_3 contents with a two-factor randomized block design and two orthogonal designs. We analyzed the growth responses(including plant height, root length, shoot-leaf biomass and root biomass) of A. ordosica seedlings to different soil CaCO_3 contents. The results revealed that, with a greater soil CaCO_3 content, A. ordosica seedlings gradually grew more slowly, with their relative growth rates of plant height, root length, shoot-leaf biomass and root biomass all decreasing significantly. Root N/P ratios showed significant negative correlations with the relative growth rates of plant height, shoot-leaf biomass and root length of A. ordosica seedlings; however, the relative growth rate of root length increased significantly with the root P concentration increased, showing a positive correlation. These results demonstrate that soil CaCO_3 reduces the local P availability in soil, which produces a non-adaptive phenotypic plasticity to A. ordosica seedlings. This study should prove useful for planning and promoting the restoration of damaged/degraded vegetation in arid and semi-arid areas of China.  相似文献   

9.
不同形态氮素营养对水稻抗旱性影响的研究   总被引:2,自引:1,他引:2  
采用溶液培养方法,在不同水分胁迫强度下,分析不同氮素形态(铵态氮、硝态氮、铵硝混合态氮)对水稻生长状况与水分关系的影响.结果表明:在轻度水分胁迫(5%PEG,约相当于-0.05 MPa)条件下,供铵和供铵硝混合态氮水稻生物量高于正常水分条件下的相应供氮形态处理,说明适度水分胁迫可以刺激这2种供氮形态水稻的生长;在重度水分胁迫(10%PEG,约相当于-0.15 MPa)条件下,仅供铵态氮水稻生物量高于正常水分条件下的相应供氮形态处理.此外,在水分胁迫条件下,供铵态氮水稻根系总长、根表面积和根系体积受水分胁迫影响不明显.重度水分胁迫条件下,供铵态氮水稻单位茎截面积的伤流液流速、水分利用率等都显著高于其他供氮形态水稻.因此,与其他氮素形态相比,供应铵态氮可以增强水稻在干旱环境下的生长.  相似文献   

10.
Determining the mechanisms underlying the spatial distribution of plant species is one of the central themes in biogeography and ecology. However, we are still far from gaining a full understanding of the autecological processes needed to unravel species distribution patterns. In the current study, by comparing seedling recruitment, seedling morphological performance and biomass allocation of two Haloxylon species, we try to identify the causes of the dune/interdune distribution pattern of these two species. Our results show the soil on the dune had less nutrients but was less saline than that of the interdune; with prolonged summer drought, soil water availability was lower on the dune than on the interdune. Both species had higher densities of seedlings at every stage of recruitment in their native habitat than the adjacent habitat. The contrasting different adaptation to nutrients, salinity and soil water conditions in the seedling recruitment stage strongly determined the distribution patterns of the two species on the dune/interdune. Haloxylon persicum on the dunes had lower total dry biomass, shoot and root dry biomass, but allocated a higher percentage of its biomass to roots and possessed a higher specific root length and specific root area by phenotypic traits specialization than that of Haloxylon ammodendron on the interdune. All of these allowed H. persicum to be more adapted to water stress and nutrient shortage. The differences in morphology and allocation facilitated the ability of these two species to persist in their own environments.  相似文献   

11.
探讨了放牧因子与VA菌根的相互作用对鸭茅(Dactylis glomerataL.)养分吸收和生长发育的影响。菌根效应表现在不施磷肥条件下的鸭茅地上部生育与地上、地下部的磷素营养上,但对地上部生育的效应因刈割次数的增加而降低,对地上、地下部磷素营养的效应因土壤镇压而降低。菌根对鸭茅钙素营养的效应只见于不施磷肥条件下的土壤镇压处理,而在相同条件下菌根却降低了鸭茅的镁含量。说明VA菌根对鸭茅磷素营养和生长发育的效应与土壤磷营养有关,而且因地上部的过度采食和土壤镇压而降低。  相似文献   

12.
以冬小麦品种北农6号为材料,通过温室管栽试验,研究了苗期中度和童度缺水条件下分蘖期复水对冬小麦株高、叶面积、根、冠干物质积累、叶面积比、根冠比、产量、耗水量和水分利用效率等指标的影响.结果表明,苗期受旱程度不同的冬小麦分蘖期恢复供水后,其株高、单株叶面积、生物量及产量等都超过中度和重度缺水对照,表现出明显的激发生长效应.同时,各复水处理与对照相比,分配到冠部的干物质比饲均增加,R/S下降.在不同土壤水分条件下,冬小麦的水分利用效率随耗水量的增加而降低,中度水分亏块后分蘖期充分供水的处理,可以在少减产的情况下节约大量用水,从而达到提高水分利用效率的目的.  相似文献   

13.
A. WALKER 《Weed Research》1973,13(4):407-415
Summary. Turnip, lettuce and ryegrass seedlings showed toxicity symptoms following shoot exposure to atrazine, linuron and aziprotryne at soil concentrations less than would be obtained from normal field applications. Responses following shoot exposure to simazine and lenacil were much less. Root exposure to all five herbicides caused seedling death at concentrations lower than those required for 'shoot-zone' toxicity. Pronamide and chlorpropham were tested against ryegrass only and at the concentrations examined were toxic only when localized in the shoot zone. Root exposure suppressed root growth, but the shoots were able to grow normally if the soil was kept sufficiently moist. Shoots contained more 14C-atrazine at emergence after shoot exposure compared with root exposure, but there was little subsequent uptake from the shoot zone. There was extensive uptake from the root zone after emergence. In the shoot-zone treatments, concentrations in the plant were high at emergence but were rapidly diluted by plant growth, whereas with root exposure, they increased throughout the experiments. The possible significance of these results to herbicide bebaviour under field conditions is discussed.
La distribution verticale des herbicides dans le sol et leur disponibilité pour les plantes: absorption comparée par la partie aèrienne et par les radnes  相似文献   

14.
Triapenthenol is the proposed common name for a new plant growth regulator (E)-l-cyclohexyl-4, 4-dimethyl-2-(1, 2, 4-triazol-l-yl)-l-penten-3-01. Its main influence upon plants is an inhibition of shoot growth. Root growth is not inhibited at normal dosages. Growth inhibition in dicotyledons is achieved by either foliar or root uptake, while in monocotyledons, root uptake is necessary and foliar treatment fails to produce growth inhibition. Mainly acropetal transport of the compound is assumed to be responsible for this behaviour. Apart from growth inhibition, a marked influence upon water relations in plants was observed. In barley, water consumption was reduced for whole plants. Calculations also revealed a reduction of transpiration per unit leaf area. In rape only an initial reduction of water consumption was observed. The fresh weight/dry weight ratio of plants was increased by the compound. The total nitrogen content per plant was unchanged but increased when calculated on a dry weight basis. The compound exerted retardant effects by interfering with gibberellin biosynthesis, but the shape of the dose-response curves with increasing gibberellin concentrations in the presence and in the absence of triapenthenol suggests that this may not be the only effect of the compound on the plant metabolism.  相似文献   

15.
Alhagi sparsifolia Shap. (Fabaceae) is a spiny, perennial herb. The species grows in the salinized, arid regions in North China. This study investigated the response characteristics of the root growth and the distribution of one-year-old A. sparsifolia seedlings to different groundwater depths in controlled plots. The ecological adaptability of the root systems of A. sparsifolia seedlings was examined using the artificial digging method. Results showed that: (1) A. sparsifolia seedlings adapted to an increase in groundwater depth mainly through increasing the penetration depth and growth rate of vertical roots. The vertical roots grew rapidly when soil moisture content reached 3%-9%, but slowly when soil moisture content was 13%-20%. The vertical roots stopped growing when soil moisture content reached 30% (the critical soil moisture point). (2) The morphological plasticity of roots is an important strategy used by A. sparsifolia seedlings to obtain water and adapt to dry soil conditions. When the groundwater table was shallow, horizontal roots quickly expanded and tillering increased in order to compete for light resources, whereas when the groundwater table was deeper, vertical roots developed quickly to exploit space in the deeper soil layers. (3) The decrease in groundwater depth was probably responsible for the root distribution in the shallow soil layers. Root biomass and surface area both decreased with soil depth. One strategy of A. sparsifolia seedlings in dealing with the increase in groundwater depth is to increase root biomass in the deep soil layers. The relationship between the root growth/distribution of A. sparsifolia and the depth of groundwater table can be used as guidance for harvesting A. sparsifolia biomass and managing water resources for forage grasses. It is also of ecological significance as it reveals how desert plants adapt to arid environments.  相似文献   

16.
A new test design for the non-axenic submergent aquatic macrophytes Elodea canadensis Michx. and Myriophyllum spicatum L. has been developed for potential use in herbicide toxicity testing. For the non-axenic cultures, the best growth conditions were observed in the Elendt-M4 medium in which no growth of algae or bacteria was observed. Cuttings were placed in beakers containing only the artificial M4 medium or were planted in small beakers containing OECD (Organisation for Economic Cooperation and Development) sediment (5% peat, 75% sand, 20% kaolinite), which were then placed in larger vessels with the M4 medium. The plants were observed for main and secondary shoot length, biomass and root formation within 2-3 weeks of planting. Growth rates were calculated for total plant length and biomass. The variance between the replicates was low throughout the experiment [coefficient of variation (CV) < 26% for total plant length, and between 16 and 40% for biomass]. Relative growth rates based on total plant length were determined as 0.028 and 0.050 per day for M. spicatum in the systems containing M4 medium only and medium plus sediment respectively. Similar results were observed for E. canadensis, with relative growth rates of 0.26 and 0.073 per day in the two test systems. The root-shoot ratio at harvest was greater by a factor of 2-3 for E. canadensis in the M4 medium than in the system containing sediment. However, comparable ratios were observed for M. spicatum in the two test systems. Both growth in total plant length and growth in biomass of the two species have potential as measures of toxicity.  相似文献   

17.
不同供硼水平对绿豆植株形态和生长发育的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
在生长室利用水培研究了不同供硼水平对绿豆植株形态和生长发育的影响.结果表明,缺硼抑制绿豆生长,对地下部的影响比对地上部的影响大,冠根比增加;缺硼明显抑制叶面积,比叶面积(SLA)下降;缺硼使叶重比(LWR)提高和叶片脉间失绿、变厚、变脆.与适量供硼相比,过量供硼也影响绿豆的生长,但对冠根比没有影响,过量供硼对植株地上部和地下部具有相同的抑制作用;硼中毒导致成熟叶片过旱脱落,使光合面积变小;过量供硼对比叶面积和叶重比没有影响.  相似文献   

18.
以Hoagland营养液为介质,在不同Zn与CaCO3用量下,将以下5种基因型冬小麦进行营养液混合培养,探讨小麦幼苗生长及Zn与P吸收的状况。根据生长量及缺Zn症状的严重程度,把S02-8、远丰998判定为缺Zn敏感型,而中育6号、小偃22及西杂1号为缺Zn非敏感型;适量供Zn比高量供Zn更有利于小麦生长;低量Ca-CO3可在一定程度上促进小麦幼苗生长而高量CaCO3会抑制生长,缺Zn敏感型的生长量显著低于非敏感型,且前者的根冠比小于后者。加入CaCO3后对小麦植株Zn、P吸收的影响较小,但地上部P/Zn随CaCO3添加量的增加而递减。根系与地上部含Zn量与吸收量均随供Zn量的增加而增加,而高量供Zn时Zn在根部大量累积,同时高Zn用量在一定程度上抑制小麦植株对P的吸收,P/Zn随Zn用量的增加而降低。与不供Zn相比,高量供Zn显著降低了小麦植株根系及地上部的P/Zn值,而低量供Zn时,地上部的P/Zn仅有轻微的降低。供试的5种基因型小麦的P含量均未超过P中毒临界值,因此小麦幼苗出现的缺Zn症状与P无关。相对于缺Zn非敏感型小麦,缺Zn敏感型更易于在根系中累积Zn,吸P量较低,且地上部P/Zn较高。  相似文献   

19.
The recently developed “second generation” of Roundup Ready® soybean (RR2) cultivars commercially available for farmers in 2008 were promoted as higher yielding relative to the “first generation” RR cultivars (RR1). Previous studies showed that glyphosate reduced such yield components as photosynthesis, water absorption, nutrient uptake and symbiotic N2 fixation in RR soybean cultivars; however, no data are available regarding the glyphosate effects on these physiological factors in RR2 soybean. Thus, the objective of this research was to evaluate the nutrient accumulation and nodulation of both generations of RR soybeans at different rates of glyphosate applied at various growth stages. In general, increased glyphosate rates and late applications decreased the nutrient accumulation, nodulation, and shoot and root biomass in both RR1 and RR2. All macro- and micronutrients, with exception of N and K, accumulated more in RR1 than RR2. Although this result may be an individual cultivar characteristic, it suggests that the RR2 cultivar was also inefficient in nutrient uptake and translocation or was unable to rapidly recover from potential chelating effects of glyphosate. These studies suggest that applying glyphosate at early growth stages using the lowest glyphosate rate might have less damage on growth and productivity of RR soybeans.  相似文献   

20.
综述了根活性格局的概念、测定方法及其在农田科学管理中的应用,并对相关研究进行了展望。根的活性格局是根的功能学指标,反映根系各个部位对其总体吸收能力的贡献大小,它与活性根的格局在本质上存在着区别,与根的形态格局常具有不一致性。在根活性格局测定方法中,^32P土壤注入法应用最为广泛,土壤水分消耗法主要限于干旱半干旱地区。根活性格局在农田科学管理甲的应用主要表现在:在土壤-植物水分运移模拟中,根活性格局对根系吸水能力的描述更为真实;通过调查作物根活性的高值区和高峰期,可确定施肥的最佳位置和时间;利用不同作物根活性时空分布特点指导物种和种植方式的选择.可实现作物在资源利用上的互补性,发挥某些作物的安全网和营养泵功能。进行作物根活性格局的不同同位素示踪研究、建立各种常见作物物种肋根活性格局数据库等工作还需进一步加强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号