首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
为考察水力停留时间(HRT)对不同硝酸盐氮(NO3--N)浓度的养殖污水脱氮效果的影响,建立以聚己内酯(PCL)为碳源和生物膜载体的固相反硝化反应器,经历20 d培养,反应器成功启动。试验结果表明,当进水NO3--N浓度分别为100 mg/L以下、150 mg/L、200~300 mg/L时,反应器的最佳HRT分别为4、5.5和6 h,出水NO3--N浓度达到最低值,分别为17.9 mg/L、23.9 mg/L和34.1~47.4 mg/L,同时溶解性有机碳(DOC)没有大幅增加。反应器对氨氮(NH4+-N)亦有一定的去除效果,在反应器启动运行后,出水NH4+-N浓度明显下降,且在不同进水NO3--N及HRT下均稳定在5 mg/L左右,出水亚硝酸盐氮(NO2--N)一直维持在0.14 mg/L以下;同时,反应器对养殖污水中的溶氧(DO)和p H变化有一定抗性,缓冲能力较强。本研究对水产养殖脱氮的实验室研究和实际运行、管理具有参考意义。  相似文献   

2.
养殖水体沉积物中氮的形态、分布及环境效应   总被引:8,自引:1,他引:8  
养殖水体沉积物中的氮可分为有机态氮和无机态氮,以有机态氮为主(70%~90%)。无机态氮主要有NO3--N、NO2--N和NH4 -N,其中以NH4 -N为主。各形态的氮含量在水平方向上的分布随距污染源的远近而有小到大变化;垂直方向上的分布则是:NH4 -N随沉积深度的增加含量增大,NO3--N随沉积深度的增加含量减小,而NO2--N随沉积深度的变化不明显。  相似文献   

3.
亚硝态氮对鲤鱼种血液SOD及GSH-Px的影响   总被引:5,自引:0,他引:5  
韩英  张辉  王琨 《淡水渔业》2007,37(1):66-68
研究了不同浓度的亚硝态氮对鲤(Cyprinus carpio)鱼种抗氧化能力的影响。试验鱼为体重130~250 g的鲤鱼种,按水体NO2--N浓度设3组共9个处理进行试验,其中对照组NO2--N浓度低于0.01 mg/L,低浓度组为0.2 mg/L、0.4 mg/L、0.6 mg/L、0.8 mg/L,高浓度组为1.5 mg/L、2.5 mg/L、3.5 mg/L、4.5 mg/L,试验期30 d。结果显示:低浓度组的平均超氧化物歧化酶(SOD)活力在150~175 U/mL之间;高浓度组的SOD酶活力在70~90 U/mL之间,明显低于低浓度组(P<0.05);不同NO2--N浓度对鲤鱼种血液中谷胱甘肽过氧化物酶(GSH-Px)活力的影响没有显著差异(P≥0.05),其平均活性在250~350 U/mL之间。结论:水体中NO2--N含量超过1.5 mg/L时,鲤鱼种的抗氧化能力受到一定影响。  相似文献   

4.
2007~2009年在龙川江楚雄水文站进行采样分析,对龙川江氮(N)、磷(P)含量变化及输出特征进行了研究.结果表明,总氮(TN)和总磷(TP)月均含量分别为1.088~3.834 mg/L和0.091~2.036 mg/L;其中,N以NO3--N为主,占总氮含量的39.4%~93.7%;P输出以颗粒态磷(PP)为主,占TP的93.6%.TN、NH4+-N和NO3--N的含量随着流量增大而呈现出先升高、后降低的趋势,据此分析流域内主要的N源为农业面源污染;总磷含量随悬浮物含量和流量的升高而升高,且相互之间存在着极其显著的正相关关系.控制雨季土壤的冲刷侵蚀是有效控制磷径流输出的最重要方式.  相似文献   

5.
大口黑鲈投喂两种不同饲料对水质指标的影响   总被引:3,自引:0,他引:3  
为了研究投喂两种不同饲料(冰鲜下杂鱼与配合饲料)对大口黑鲈养殖水质指标的影响,在室内水泥池进行了28d的饲养试验.对水体中的COD、PO4--P、TP、TN、NH3-N、NO3--N、NO2-N等指标进行了测定.结果表明,投喂两种饲料各指标均有不同程度的增加,但养殖一个月后冰鲜组比饲料组要高许多:杂鱼组COD、PO4--P、TP、TN、NH3-N、NO3--N、NO2--N分别为25.3mg/L、2.4mg/L、2.28mg/L、3.44mg/L、2.91mg/L、0.52mg/L、0.075mg/L,而配合饲料组分别为10.2mg/L、0.58mg/L、0.855mg/L、2.17mg/L、0.29mg/L、0.048mg/L、0.03mg/L.特别是PO4--P、TP,冰鲜组分别为饲料组的4.2倍和2.7倍.这说明投喂人工饲料可以减轻有机污染程度,特别是在控制PO4--P、TP的增加方面效果显著.试验结果对于控制水体的富营养化具有重要的指导意义.  相似文献   

6.
水族箱中残饵、粪便分解会造成氨的增加,不同水族箱,其氨负荷存在差异。本文比较分析了不同氨负荷条件下,水族箱硝化功能的建立过程。结果表明,氨负荷分别为0.25 mg/L.d,0.5 mg/L.d和1.0mg/L.d条件下,实验组中氨氮浓度达到峰值的时间分别为16 d2、1 d和32 d,峰值分别为2.63 mg/L、5.37mg/L和23.44 mg/L;亚硝酸盐氮浓度达到峰值的时间分别为26 d、30 d和54 d,峰值分别为1.65 mg/L、7.91 mg/L和35.37 mg/L;硝化功能建立所需的时间分别为45 d4、6 d和65 d。氨负荷较低时(0.25 mg/L.d、0.5 mg/L.d),氨氮和亚硝酸盐氮峰值浓度低,硝化功能建立所需的时间短;氨负荷较高时(1.0 mg/L.d)时,氨氮和亚硝氮峰值浓度高,硝化功能建立的时间明显增加。  相似文献   

7.
为研究养殖库区水域氮的时空分布特征,于2014年3月至2015年2月在福建省水口水库范围内主要养殖库区选取15个采样点进行每月的监测和动态研究,全面分析了不同养殖库区、不同时期水体各形态氮的时空变化特征。结果表明,养殖库区水体总氮、氨氮、亚硝态氮平均浓度分别为1.38~2.15、0.24~0.53,0.03~0.06 mg/L。不同养殖库区水体各形态氮含量因季节更替而变化较大,总体趋势是总氮浓度冬季较高;除太平养殖库区外,其他养殖库区水体的氨氮浓度春季较高,浓度范围为0.466~0.596 mg/L;亚硝态氮浓度变化幅度不大,范围为0.009~0.031 mg/L。不同养殖区域水体中各态氮含量具有一定的相关性,雄江和太平养殖库区中总氮和氨态氮、亚硝态氮之间相关性不显著,黄田库区和湾口库区养殖区水体中总氮和氨态氮、亚硝态氮呈现负相关;尤溪口养殖库区水体中氨态氮和亚硝态氮呈显著负相关。  相似文献   

8.
草鱼养殖水体中参与氮转化途径的异养菌分析   总被引:1,自引:0,他引:1  
为分析草鱼池塘中参与氮代谢的异养细菌比例及其代谢途径,从杭州郊区取得4个草鱼池塘的水样,每个水样通过涂布随即挑选100株菌株进行定性显色试验,并据此选取11株异养菌进行16S rRNA序列分析。结果表明,4个草鱼养殖池塘中NH4+-N和NO2--N的平均水平分别为5.597 mg/L和0.135 mg/L。池塘中可培养的异养菌平均为3.26×105cfu/mL,其中的89.75%参与了氮的不同代谢途径,其中31.25%的氨化菌和33.50%NO3--N(NO2--N)还原菌参与了NH4+-N的生成,32.45%的氨氧化菌参与了NH4+-N的降低;NO2--N生成途径主要包括蛋白质直接转化(11.26%)、氨氧化(4.25%)和硝酸盐氮还原(10.75%),而NO2--N降低主要通过15.50%的亚硝酸氧化菌、8.75%的NO2--N还原菌和10.75%的反硝化菌实现。结果提示,草鱼养殖水体中存在大量的异养硝化菌参与不同的氮代谢途径,且产生氨氮的异养菌比例远高于去除氨氮的菌,这是草鱼养殖水体中氨氮含量易偏高的原因。同时,11株不同功能的异养菌16SrRNA鉴定结果为寡养食单胞菌(Stenotrophomonas)6株、假单胞菌(Pseudomonas)3株、克雷伯氏菌(Klebsiella)和肠杆菌(Enterobacter)各1株,而且细菌对氮源的利用具有菌株特异性。  相似文献   

9.
室外轮虫培育池中非生物因子的初步研究   总被引:1,自引:0,他引:1  
通过对室外轮虫培育池的几个水化学指标的跟踪测定,发现在培养初期,轮虫池的溶氧、pH值都很高。随着轮虫量的增加,溶氧和pH值下降到相对较低水平,氨态氮、活性磷等营养盐量在轮虫大量发生后迅速上升。后期溶氧、pH值上升,氨态氮下降。在培养期间,由于轮虫量变化大,一些主要理化因子的量及变化幅度也随之加大。溶氧的变化范围:2 66~12 7mg L,平均值为6 97mg L;pH的变化范围:8 57~9 60,平均值为8 93;营养盐中氨态氮变化范围:0 26~6 58mg L,平均值为3 77mg L;活性磷变化范围:0 035~1 41mg L,平均值为0 256mg L;CODMn值变化范围:20 8~65 2mg L,平均值为35 17mg L。  相似文献   

10.
通过室内培养试验,研究了不同浓度非离子态氨( NH3)条件下富营养化湖泊——太湖梅粱湾水体硝化作用的2个过程,即氨氧化和亚硝酸盐氧化的发生情况.结果表明,在试验设计的NH3浓度范围内,颗粒态氨氧化和自由态氨氧化速率都随着NH3浓度的升高而显著增加,同时在高浓度NH3(0.65和0.85 mg/L)下,颗粒态氨氧化速率在总氨氧化速率中所占比例也显著增加.而亚硝酸盐氧化过程的发生却具有明显的阶段性,当NH3浓度从0.05增加到0.15mg/L时,自由态亚硝酸盐氧化速率有一定的降低,但是颗粒态亚硝酸盐氧化速率却显著增加,导致总亚硝酸盐氧化速率也显著上升;当NH3浓度从0.15增加到0.85 mg/L,自由态亚硝酸盐氧化速率随着NH3浓度的升高而进一步降低,同时颗粒态亚硝酸盐氧化速率也随着NH3浓度的增加开始显著降低,导致总亚硝酸盐氧化速率急剧降低.  相似文献   

11.
泾河宁夏段夏季浮游生物群落结构特征   总被引:1,自引:2,他引:1  
2010年7-8月对泾河宁夏段浮游生物群落组成进行了调查.结果表明,该河段浮游植物种类有6门、81种(属),密度为1.1万~11.6万个/L,平均密度为4.37万个/L.生物量为0.024 ~0.210 mg/L,平均生物量为0.083 mg/L.浮游动物有4门、54种(属),密度为60 ~ 185个/L,平均密度为107.73个/L.生物量为0.02~0.66 mg/L,平均生物量为0.24 mg/L.浮游植物多样性指数表明,该河段水质良好,浮游生物群落结构不稳定,易受外界的干扰.  相似文献   

12.
2010年7 ~ 12月,通过水培盆栽试验研究了桐花(Aegiceras corniculatum)、海莲(Bruguiera sexangula)和无瓣海桑(Sonneratia caseolaris)对生活污水的净化效果,设置了3个浓度梯度,即N1P1(TN 为3.96 mg• L-1,TP为 0.47 mg• L-1),N2P2(TN为 19.8 mg•L-1,TP 为2.35 mg•L-1)和N3P3(TN为 39.6 mg•L-1,TP为 4.7 mg•L-1)。研究结果表明:随着水培时间的增加,水体盐度、总氮和总磷含量显著下降(P <0.001)。桐花、海莲和无瓣海桑对生活污水总氮去除率达74.5% ~ 97.4%,总磷去除率达72.3% ~ 95.7%。栽培有红树植物的系统对氮磷的去除率显著高于无植物系统,分别为无植物的1.28倍 ~ 3.2倍和1.24倍 ~ 2.71倍。红树植物氮磷质量分数分别为6.81 mg•g-1±0.85 mg•g-1 和 1.41 mg•g-1±0.46 mg•g-1。当污水浓度低时(N1P1),红树植物主要是通过累积作用去除水体氮磷,占总去除效应的42.2% ~ 63.3%和46.1% ~ 85.8%。当污水浓度高时(N3P3),红树植物氮磷累积量仅占4.5% ~ 10.4%和6.7% ~ 14.9%。  相似文献   

13.
采用上-下法和改进寇氏法分别研究了高效氯氟氰菊酯(lambda-cyhalothrin)、吡虫啉(imidacloprid)和阿维菌素(avermectin)对尖膀胱螺(Physa acuta)的急性毒性,用上-下法测得高效氯氟氰菊酯、吡虫啉、阿维菌素对尖膀胱螺的48 h LC50分别为2.581、10.030、0.104 mg/L.用改进寇氏法获得高效氯氟氰菊酯、吡虫啉、阿维菌素对尖膀胱螺的24 h LC5o分别为4.447、12.676、0.110mg/L;48 h LC50分别为2.252、9.789、0.096 mg/L;72 h LC50分别为2.113、8.818、0.056 mg/L;96 h LC50分别为1.643、7.959、0.034 mg/L;安全浓度分别为0.164、0.796、0.003 mg/L.结果表明,用上-下法与改进寇氏法所获得的LC50基本接近.尖膀胱螺对3种杀虫剂都非常敏感,含微量杀虫剂的水体均会对其生存产生危害.  相似文献   

14.
珠三角地区密养淡水鱼塘水质状况分析与评价   总被引:4,自引:0,他引:4  
池塘养殖是珠三角地区淡水渔业生产的主要形式。2012年5月~12月对草鱼(Ctenopharyngodon idellus)、云斑尖塘鳢(Oxyeleotris marmoratus)、大口黑鲈(Micropterus salmoides)和乌鳢(Channa argus)等该地区几种主要密养淡水品种鱼塘水质进行监测,分析水体理化环境因子,并选取pH、溶解氧(DO)、非离子氨(NH3)、氨氮(NH4^+-N)、硝酸盐氮(NO3^--N)、亚硝酸盐氮(NO2^--N)、总氮(TN)、总磷(TP)、高锰酸盐指数(CODMn)和透明度等10项因子,采用单项污染指数和负荷比对监测参数进行单项评价,用综合污染指数法对各池塘水质进行整体评价。结果表明4种密养淡水鱼塘营养盐负荷高问题突出,NH3、NO3^--N、NO2^--N、TN和TP为池塘中的主要污染因素;草鱼池塘主要污染物为NH3和TN,其污染负荷合计为37.58%;云斑尖塘鳢池塘主要污染物为NH3、NO3^--N和TN,其污染负荷达59.37%;大口黑鲈池塘的主要污染物为NH3、TN、NO3^--N和NO2^--N,其污染负荷高达66.80%;乌鳢池塘的主要污染物为TN、NO3^--N、TP和NH3,其污染负荷达59.43%;对CODMn的分析与评价结果显示,池塘水体中还原性有机质含量高;由综合污染指数判定,所有池塘水体均为"重污染"等级,并超出警戒水平。  相似文献   

15.
采用灰色系统关联度分析方法,以空间理论数学为基础,依规范性、偶对称性、整体性和接近性原则,计算并分析了在人工控制条件下澧县王家厂水库13个生态因子(透明度、水深、水温、溶解氧、酸碱度、电导率、氨氮、硝酸盐氮、总磷、总氮、氮磷比、浮游动物和浮游植物)的关联度,南河关联序结果为:氮磷比〉总氮〉硝酸氮〉氨氮〉浮游植物〉浮游动...  相似文献   

16.
澧县王家厂水库生态因子的灰关联分析   总被引:1,自引:0,他引:1  
采用灰色系统关联度分析方法,以空间理论数学为基础,依规范性、偶对称性、整体性和接近性原则,计算并分析了在人工控制条件下澧县王家厂水库13个生态因子(透明度、水深、水温、溶解氧、酸碱度、电导率、氨氮、硝酸盐氮、总磷、总氮、氮磷比、浮游动物和浮游植物)的关联度,南河关联序结果为:氮磷比>总氮>硝酸氮>氨氮>浮游植物>浮游动物>溶解氧>酸碱度>总磷>水温>电导率>透明度>水深;北河:氮磷比>总氮>总磷>硝酸氮>浮游动物>水温>水深>酸碱度>溶氧>透明度>浮游植物>电导率>氨氮。分析表明,氮磷比、总氮和总磷是水库水体的优势影响因子。在研究过程中发现,除个别样点超出Ⅲ类水标准外,其余均在Ⅲ类范围内;说明王家厂水库在放养鱼类的情况下,通过合理的人工能量投入,可以达到既增加水体生物的多样性,又提高水体生产力,实现水生态保护的目的。  相似文献   

17.
不同氮源对铜绿微囊藻增殖的影响   总被引:1,自引:0,他引:1  
在实验室条件下,利用单细胞藻一次性培养方法,研究了硝酸氮、铵氮和尿素对铜绿微囊藻(Microcystis aeruginosa)增殖的影响。结果表明:以硝酸氮作为氮源时,铜绿微囊藻增殖速率优于另外2种氮源条件下的,其最适增殖浓度为1.5~5.0mmol/L。低浓度铵氮(0.5mmol/L)即适宜铜绿微囊藻生长,而高浓度时会抑制铜绿微囊藻生长。尿素氮浓度0.5~1.5mmol/L时最利于铜绿微囊藻生长。试验结果提示在监测水体氮营养盐时应该包括多种无机氮和有机氮,只测总氮难于准确预测水华。  相似文献   

18.
2005年6月至2006年4月对长江三峡库区投饵网箱养殖区上游、网箱养殖区以及网箱养殖区下游底泥中有机物耗氧量、TN、NO3-N、TP、硫化物等指标进行了监测。结果显示,网箱养殖区及网箱下游底泥有机物耗氧量和总磷含量分别高出对照区5.4~6.5 mg/g和0.03~0.08 g/kg,网箱养殖区及网箱下游底泥总氮含量及硝态氮含量分别高出对照区40~80 mg/kg和0.8~1.2 mg/kg,网箱养殖区及网箱下游底层水的硫化物含量平均值分别高出对照区1.3 mg/L和0.11 mg/L。  相似文献   

19.
采用上流式和下流式曝气生物滤池处理凡纳滨对虾(Litopenaeus vannamei)养殖污水,连续进行30 d,分析出水水质,并观察系统运行情况和装置污染状况。研究了养殖污水中化学需氧量、氨氮、硝酸盐氮、亚硝酸盐氮、无机氮及活性磷酸盐6项指标的去除效果。实验结果表明:从养殖污水主要污染物指标的去除效果和稳定性上看,上流式优于下流式曝气生物滤池。在系统进水化学需氧量质量浓度为7.62~8.20 mg/L、氨氮质量浓度为0.62~0.65 mg/L、硝酸盐氮质量浓度为0.54~0.59 mg/L、亚硝酸盐氮质量浓度为0.23~0.27 mg/L、无机氮质量浓度为1.40~1.47 mg/L、活性磷酸盐质量浓度为0.24~0.29 mg/L,水温为25℃~30℃时,上流式曝气生物滤池对养殖污水中6项指标的去除率分别为:45.2%、88.9%、58.5%、78.8%、75.3%和25.1%。可见,对氨氮的去除效果最佳,亚硝酸盐氮和无机氮次之,化学需氧量和硝酸盐氮的去除效果较差,活性磷酸盐去除率最低。  相似文献   

20.
铝盐絮凝作用强,常用于水体水质治理工程中,但铝盐的添加是否对沉水植物产生不利影响尚不明确。本研究采用室外模拟方法,研究了不同浓度铝盐(明矾)对沉水植物苦草的影响。设置了三个不同铝盐浓度处理组:对照组(无添加)、一次加铝组(15 mg•L-1明矾)、三次加铝组(45 mg•L-1)。结果表明:(1)一次加铝组叶绿素a、反应活性磷、pH、碱度较实验开始时均有下降,且三次加铝组显著低于一次加铝组;(2)三次加铝组中水体总氮浓度最高;(3)三次加铝组苦草的相对生长率显著低于对照组。本研究说明铝盐的使用能在短期内一定程度上减轻水体污染,高剂量使用虽能抑制浮游植物的生长,但同时也会对沉水植物苦草的生长产生抑制作用,且使水体水质恶化,在湖泊生态修复时铝盐絮凝剂需谨慎使用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号