首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 189 毫秒
1.
An experiment was conducted to investigate the effect of dietary iron supplement on growth, haematology and microelements of juvenile grouper, Epinephelus coioides. Casein–gelatine‐based diets supplemented with 0, 50, 100, 150, 200 and 250 mg kg−1 iron from ferrous sulphate were fed to grouper (mean initial weight: 21.0 ± 0.2 g) for 8 weeks. Weight gain was highest in fish fed the diet supplemented with 100 mg kg−1 iron, intermediate in fish fed diets with 50, 150, 200 and 250 mg kg−1 iron and lowest in fish fed the basal diet. Feed efficiency followed a similar trend except that the lowest value was in fish fed the basal diet and the diet supplemented with 250 mg kg−1 iron. Hepatic iron was highest in fish fed diets supplemented with iron ≥100 mg kg−1, followed by fish fed diet with 50 mg kg−1 iron and lowest in fish fed the basal diet. The whole‐body iron was lowest in fish fed the basal diet but not significantly different from other groups, as judged by anova . Iron supplement to the basal diet had no significant effect on haematological parameters (red blood cell count, haematocrit and haemoglobin), hepatic copper concentration or manganese, zinc concentration in liver and whole body. Broken‐line analysis of hepatic iron indicated that iron supplementation of 100 mg kg−1 satisfied the hepatic iron storage and that further supplementation did not expand the iron status.  相似文献   

2.
An 8‐week feeding trial was conducted to establish the dietary vitamin E requirement of juvenile cobia. The basal diet was supplemented with 10, 20, 30, 40, 60, 120 mg vitamin E kg?1 as all‐rac‐α‐tocopheryl acetate. The results indicated that fish fed the diets supplemented vitamin E had significantly higher specific growth rate, protein efficiency ratio, feed efficiency and survival rate than those fed the basal diet. It was further observed that vitamin E concentrations in liver increased significantly when the dietary vitamin E level increased from 13.2 to 124 mg kg?1. Fish fed the basal diet had significantly higher thiobarbituric acid‐reactive substances concentrations in liver than those fed the diets supplemented vitamin E. Fish fed the diets supplemented with 45.7 and 61.2 mg kg?1 vitamin E had significantly higher red blood cell and haemoglobin than those fed the basal diet, while fish fed the diets supplemented with 61.2 and 124 mg kg?1 vitamin E had higher immunoglobulin concentration than those fish fed the basal diet. Lysozyme and superoxide dismutase were significantly influenced by the dietary vitamin E level. The dietary vitamin E requirement of juvenile cobia was established based on second‐order polynomial regression of weight gain and lysozyme to be 78 or 111 mg all‐rac‐α‐tocopheryl acetate kg?1 diet, respectively.  相似文献   

3.
A study was conducted to determine the dietary iron requirement of fingerling Atlantic salmon Salmo salar L. During the first 4 weeks of the experiment, fish with an initial weight of 5 g were fed a casein–gelatine-based purified diet which contained 11 mg iron kg?1. Thereafter duplicate tanks (200 fish in each) were fed the casein–gelatine purified diets containing supplemental iron levels of 0, 10, 20, 30, 40, 60, 100, 200 or 400 mg iron kg?1 (added as FeSO?4* 7H2O) for 12 weeks. Weight gain, body length and mortality were monitored. Liver iron and ascorbic acid concentration were analysed in addition to whole-body iron, manganese and zinc concentration. Several haematological parameters were also measured. There were no significant differences in weight gain and survival of salmon fed diets containing different iron levels. Haematological values, hepatic and whole-body iron concentrations were, however, significantly affected by the dietary iron content. Liver vitamin C concentration decreased with increasing dietary iron levels. Dietary supplementation with iron significantly reduced whole-body manganese, but no effect of dietary iron on whole-body zinc was found. Based on haematology and hepatic iron concentration, the iron requirement of Atlantic salmon was determined to be between 60 and 100 mg iron kg1.  相似文献   

4.
Soft-shelled turtles, Pelodiscus sinensis , with an average weight of 5.55 g, were fed diets supplemented with eight levels of ferrous sulphate for 8 weeks. The analysed iron content ranged from 50.8 to 482.9 mg kg−1. Growth rate of turtles fed the control diet with no iron supplementation was the lowest among all dietary groups. Haematological parameters including red blood cell, haemoglobin, haematocrit, mean corpuscular volume, mean corpuscular haemoglobin and mean corpuscular haemoglobin concentration of the turtles fed the control diet were also significantly ( P  < 0.05) lower relative to the other groups. Thus, dietary iron at 50.8 mg kg−1 (no supplemented iron) was deemed deficient for growth and ineffective at preventing anaemia in juvenile soft-shelled turtle. Whereas, a supplementation of 50 mg kg−1 ferrous sulphate (a total dietary iron of 91.8 mg kg−1) was enough to normalize the haematological values of soft-shelled turtles to the level similar to other iron supplement-fed groups. Within the tested dietary iron range, liver iron content curve-linearly ( r 2 = 0.99) increased with increasing dietary iron level. Furthermore, thiobarbituric acid-reactive substances in liver tissues of the turtles have also increased when liver iron content increased. The dietary iron requirement of soft-shelled turtle is 120–198 mg kg−1 when ferrous sulphate is used as the source of iron.  相似文献   

5.
A 100‐day growth trial was executed to determine the dietary selenium (Se) requirement of juvenile gibel carp (Carassius auratus gibelio). Selenomethionine was supplemented to casein‐gelatin diets at 0, 0.1, 0.25, 0.5, 1.0, 2.5 and 5 mg Se kg?1, respectively. Each of these seven semi‐purified diets containing 0.34, 0.47, 0.66, 0.82, 1.23, 2.77 and 5.13 mg Se kg?1 was fed to triplicate groups of gibel carp (2.74 ± 0.02 g) in a flow‐through system. No behaviour abnormalities and no mortality were found in fish exposed to dietary Se concentrations. With the increasing dietary Se supplemented concentrations, weight gain of fish remarkably increased at the levels of ≤1 mg Se kg?1 diet and then showed no significant difference above 1 mg Se kg?1 levels. Although growth performances (weight gain, hepatosomatic index, condition factor and survival) were not impaired in gibel carp fed at above the levels of 2.5 mg Se kg?1, indicators of oxidative stress were changed significantly. Serum superoxide dismutase (SOD) activities significantly declined, hepatic glutathione peroxidase (GPx) activities significantly increased and the tissue Se concentrations significantly raised at the highest supplemented level of 5 mg Se kg?1. A clear linear relationship between Se‐depended GPx activities and hepatic Se concentrations was observed. The present results indicated that the dietary Se requirement for gibel carp is 1.18 mg Se kg?1 diet based on weight gain, GPx activities and tissue accumulation.  相似文献   

6.
The objective of this study was to determine the effect of total replacement of fish meal by cottonseed meal (CSM) supplemented with various levels of iron in practical diets on growth performance, feed utilization, body composition and some biological and haematological parameters of Nile tilapia, Oreochromis niloticus (L.). Juvenile fish (average weight 3.78±0.1 g) were stocked in 18 glass aquariums (80 L each) at 25 fish per aquarium. Fish meal (50% of the diet) was used as the sole source of animal protein in the control diet 1. Diets 2–6 had 100% CSM (0.145% free gossypol) protein with various levels of supplemented iron (86, 486, 972, 1458 and 1944 mg Fe kg diet?1) in diets 2–6 respectively. Diets were fed to fish twice daily at a rate of 3% of body weight during the first 12 weeks then 2% of the total fish biomass daily until the end of the experiment (30 weeks). The results of this study revealed that, groups of fish fed diets 1, 4, 5 and 6 had significantly (P≤0.01) the higher average body weight and specific growth rate than those of fish fed diet 2 (100% CSM without iron supplementation) and diet 3 (100% CSM plus 486 mg Fe kg diet?1). The best values for feed conversion ratio, protein efficiency ratio and condition factor (K) were recorded with groups of fish fed diet 4 (100% CSM plus 972 mg Fe kg diet?1). Red blood cell count, haematocrit and haemoglobin were increased with increasing levels of iron and significantly affected by dietary iron. Hepatosomatic index for diets 3–6 were not significantly different (P>0.05) and superior to that of diet 1 control [100% fish meal (FM)]. The gonadosomatic index of males of Nile tilapia was not influenced by CSM diets with or without iron, while females of Nile tilapia were significantly influenced with iron and the lowest values were recorded with groups of fish fed diet 2 (100% CSM without iron supplementation). Apparent digestibility coefficients of protein, fat dry matter and energy were relatively high for most diets supplemented with iron and increased by increasing iron supplementation. There were no significant differences between groups of fish fed diet 1 (100% FM) and diets 5 and 6 which contained 100% CSM with additional 1458 and 1944 mg Fe kg diet supplemental iron?1 respectively. Proximate composition of whole body was not influenced by diet. Adding 972 mg Fe kg diet?1 from ferrous sulphate to the CSM‐based diets that contained 972 mg free gossypol (1:1 iron to free gossypol ratio) for Nile tilapia reduce the negative effects of gossypol and improved growth performance, feed utilization and blood parameters and can totally replace fish meal in tilapia diets.  相似文献   

7.
A 10‐week feeding trial was conducted to evaluate the effects of dietary zinc (Zn) contents on the growth, tissue trace element contents and serum Zn levels in soft‐shelled turtles, Pelodiscus sinensis. Juvenile soft‐shelled turtles approximately 4.8 g in body weight were fed casein‐based diets containing seven levels of Zn (14, 23, 32, 43, 58, 87 and 100 mg kg?1) for 10 weeks. There were no significant differences (P > 0.05) in weight gain (WG), feed conversion ratio (FCR) or protein efficiency ratio (PER) among the dietary treatments. However, Zn concentrations in the liver, serum and carapace of turtles fed the basal diet containing 14 mg Zn kg?1 were the lowest among all groups. Zn contents in the liver, serum and carapace increased when dietary Zn increased up to a dietary Zn level of approximately 43 mg kg?1. Beyond this dietary level, tissue Zn contents were relatively constant. Carapace iron (Fe), selenium (Se) in hard tissues and haemoglobin concentrations decreased when dietary Zn increased. Dietary Zn requirements of juvenile soft‐shelled turtles derived from regression modelling using the liver, serum, carapace and bone Zn contents as indicators were 42, 39, 35 and 46 mg Zn kg?1, respectively.  相似文献   

8.
The study was conducted to determine the effect of dietary supplementation of vitamin C on anti‐acid stress ability in juvenile soft‐shelled turtle. The soft‐shelled turtles were fed vitamin C supplemented diets at levels of 0, 250, 500, 2500, 5000 and 10 000 mg kg?1 for 4 weeks. The results showed that the phagocytic rate of blood cell in the group fed vitamin C deficient diets, the serum bacteriolytic activity in the two groups fed vitamin C supplemented diet at 0 and 250 mg kg?1 and the serum bactericidal activity in all groups after acid stress significantly decreased compared with those of before stress (P < 0.1). The phagocytic rate of blood cells in the two groups fed vitamin C supplemented diet at 2500 and 5000 mg kg?1 were significantly higher than those of the four groups fed at 0, 250, 500 and 10 000 mg kg?1 (P < 0.01). The serum bacteriolytic activity in the groups fed vitamin C supplemented diet at 500, 2500, 5000 and 10 000 mg kg?1 were significantly higher than that of the group fed vitamin C deficient diets (P < 0.05), and the two groups fed vitamin C at 2500 and 5000 mg kg?1 were significantly higher than those of the groups fed at 250 and 10 000 mg kg?1 (P < 0.05). The serum bactericidal activities in the four groups fed vitamin C supplemented diet at 500, 2500, 5000 and 10 000 mg kg?1 were significantly higher than those of the two groups fed at 0 and 250 mg kg?1 diet (P < 0.01), and the two groups fed vitamin C at 2500 and 5000 mg kg?1 were significantly higher than those of the two groups fed at 500 and 10 000 mg kg?1 (P < 0.1). These results suggest that supplementation of vitamin C higher than 250 mg kg?1 is necessary to reduce the adverse effects of acid stress.  相似文献   

9.
This study was conducted to examine the effects of dietary ascorbic acid (AsA) and phospholipid (PL) and their interaction on growth, survival, and stress resistance in red sea bream larvae. Twenty‐six days old red sea bream were fed nine micro‐bound diets supplemented three levels of AsA (0, 800 and 1600 mg kg?1 diet) and PL (0, 20 and 40 g kg?1 diet) for 15 days. Dietary AsA and PL were both significant factors on survival rates. There was also an interaction between dietary AsA and PL on survival rate (P < 0.05). The larvae fed 800 or 1600 mg kg?1 AsA with 40 g kg?1 PL diets showed the highest survival rate, with values similar to those of the live‐food supplemented group. Stress resistance against low salinity exposure significantly increased with increased dietary level of AsA and PL. However, significant interaction of AsA and PL was not detected. The larvae fed 1600 mg kg?1 AsA with 40 g kg?1 PL diet showed the highest stress resistance among all diets, but it was not significantly different than that of larvae fed 800 mg kg?1 AsA with 40 g kg?1 PL diet. This study clearly demonstrated that combined use of AsA and PL can improve survival of 26–40 days posthatching red sea bream larvae. Moreover, the present study suggested that 800 mg kg?1 AsA with 40 g kg?1 PL in diet was needed for producing high quality seedling under the stressful conditions.  相似文献   

10.
An 8‐week feeding trial was conducted to investigate the effect of supplemental dietary zinc sources on the growth performance and carbohydrate utilization of juvenile tilapia Smith 1840, Oreochromis niloticus × O. aureus. The goal was to compare the bioavailability of two zinc sources, zinc sulphate (ZnSO4) or zinc methionine (ZnMet), by using two practical basal diets with 350 g kg?1 (C350) or 400 g kg?1 (C400) carbohydrates based on wheat as the carbohydrate source. The results showed that fish fed with a diet supplemented with 60 mg kg?1 Zn from either ZnSO4 or ZnMet had a significantly (P < 0.05) greater specific growth rate and protein efficiency ratio than those fed with the diets of ≤30 mg kg?1 Zn. The composition of tilapia carcass was also found to be influenced by various levels of dietary zinc from the two zinc sources. The G6P‐DH in fish fed with the 20 mg kg?1 ZnMet diet and the PK levels in fish fed with 20 mg kg?1 ZnSO4 and 30 mg kg?1 ZnMet diet were significantly (P < 0.05) higher than those in fish fed with the C400 diet. The data suggest that supplemental dietary zinc from either ZnMet or ZnSO4 significantly affects the growth performance and carbohydrate utilization of tilapia.  相似文献   

11.
A 10‐week feeding trial was conducted to determine the optimal requirement of cobia (Rachycentron canadum Linneaus) for dietary ascorbic acid (AA). Graded levels of L‐ascorbyl‐2‐polyphosphate (LAPP) were supplemented in basal diet to formulate six semi‐purified diets containing 2.70 (the control diet), 8.47, 28.3, 80.6, 241 and 733 mg AA equivalent kg?1 diet, respectively. Each diet was randomly fed to triplicate groups of fish in flow‐through plastic tanks (300 L), and each tank was stocked with 25 fish with average initial weight of 4.59 ± 0.36 g. Observed deficiency signs included poor growth, higher mortality and lower feeding rate (FR) in the fish of the control group. Fish fed the control diet had significantly lower weight gain (WG), lower feed efficiency ratio (FER) and lower tissue AA concentrations in fish liver and muscle. With the increase of dietary AA, the survival, WG, FER, hepatic and muscular AA concentrations of cobia significantly increased and then levelled off. The dietary AA requirement of cobia was estimated to be 44.7 mg kg?1 based on WG, 53.9 mg kg?1 or 104 mg kg?1 based on either hepatic or muscular AA concentration, respectively.  相似文献   

12.
Six isonitrogenous (320 g kg?1) and isolipidic (60 g kg?1) diets were formulated with graded levels (0, 5, 10 and 15 g kg?1) of dicalcium phosphate (DCP) and fungal phytase (750 and 1500 FTU kg?1 diet). Tra catfish (Pangasianodon hypophthalmus), 9.6 g, were fed the diets for 12 weeks. Each experimental diet was fed to eight replicates of fish to apparent satiation. At the end of the trial, fish fed the diets containing 15 g kg?1 DCP, 750 and 1500 FTU kg?1 phytase had higher growth performances, protein efficiency ratio and phosphorus retention than those fed the control diet, 5 g kg?1 DCP and 10 g kg?1 DCP diets (P < 0.05). Whole body ash and phosphorus concentration of fish fed the 10 g kg?1 DCP and 15 g kg?1 DCP diets were significantly higher than those of fish fed the control diet. Higher apparent digestibility coefficient of phosphorus was observed in fish fed the phytase supplemented diets. The present results indicate that supplementation of phytase at 750 FTU kg?1 and 1500 FTU kg?1 improves growth performances, feed and phosphorus utilization. The supplementation can completely replace dicalcium phosphate or other phosphorus sources in tra catfish feed and reduce the phosphorus discharge into environment.  相似文献   

13.
The aim of this study was to investigate the effect of dietary lactoferrin (Lf) on growth, haematology and non‐specific immune response of rainbow trout Oncorhynchus mykiss (Walbaum). Fish were fed an experimental diet containing 0 (as control), 50, 100, 200 and 400 mg Lf kg?1 diet twice daily for 8 weeks and sampled at 2, 4, 6 (immune function and growth), and 8 weeks (immune function, haematology and growth). Statistical analyses revealed no significant effects of dietary Lf on growth performance (specific growth rate, weight gain, feed conversion ratio, feed intake and condition factor) or haematological parameters (red and white blood cell count, haemoglobin, haematocrit, serum iron and total iron binding capacity [TIBC]). Among the serum non‐specific immune parameters, lysozyme activity increased significantly in fish fed 100, 200, or 400 mg Lf kg?1 feed for 8 weeks, whereas haemolytic complement activity increased in fish fed 100 and 400 mg Lf kg?1 diet after 6 weeks. The antiprotease activity increased in groups fed 100, 200 or 400 mg Lf kg?1 diet after 8 weeks. However, no significant effect was observed on serum peroxidase level. It can be concluded that feeding of rainbow trout on the diet supplemented with 100 mg kg?1 or higher for 8 weeks enhances the non‐specific immune response.  相似文献   

14.
A study was conducted to investigate effects and interactions of magnesium (Mg) and vitamin E (VE) on growth performance, body composition, hepatic antioxidant capacity and serum biochemistry parameters of juvenile Japanese seabass Lateolabrax japonicus under oxidative stress condition. Fish (initial average body weight of 6.10 ± 0.20 g) were fed 9 oxidized oil diets supplemented with 3 grade levels of Mg (0, 520 and 1570 mg kg?1 diet) and VE (0, 60 and 200 mg kg?1 diet) for 8 weeks in freshwater. The results showed that diets supplemented 520 mg kg?1 Mg and/or 60 mg kg?1 VE had highest growth and muscle lipid content. There were highest total superoxide dismutase, catalase, glutathione peroxidase activities and lowest malondialdehyde content in liver of fish fed diets supplemented 520 mg kg?1 Mg and/or 60 mg kg?1 VE. Contrary to Mg concentrations, Ca concentrations and Ca/Mg ratio in whole body were inversely related to dietary Mg levels. However, combined deficiency or excess of dietary Mg and VE led to the decrease of hepatic antioxidant capacity, body lipid deposition and growth of Japanese seabass under oxidative stress condition.  相似文献   

15.
An 8‐week feeding trial was conducted to determine two vitamin C derivatives, l ‐ascorbyl‐2‐sulphate (C2S) and l ‐ascorbyl‐2‐polyphosphate (C2PP), to satisfy vitamin C requirement and to test their effects on the non‐specific humoral immune responses of juvenile grouper, Epinephelus malabaricus. C2S and C2PP were each supplemented at 20, 50, 80, 150, 250 and 400 mg kg?1 diet in the semi‐purified basal diet providing of 7, 16, 28, 55, 86, 142 mg ascorbic acid (AA) equivalent of C2S kg?1 diet and 4, 9, 15, 31, 49, 75 mg AA equivalent of C2PP kg?1 diet, respectively. Basal diet without AA supplemented was included as a control. Each diet was fed to triplicate groups of grouper (mean initial weight: 6.69 ± 0.07 g). Fish fed diets with ≥28 mg AA equivalent of C2S or ≥4 mg AA equivalent of C2PP kg?1 had significantly (P < 0.05) greater weight gain (WG) than fish fed the unsupplemented control diet. Liver AA concentrations were higher in fish fed diets with ≥16 mg AA equivalent of C2S or ≥9 mg AA equivalent of C2PP kg?1 than fish fed the control diet. Alternative pathway of complement activation (ACP) was higher in fish fed diets with ≥55 mg AA equivalent of C2S or ≥15 mg AA equivalent of C2PP kg?1 than fish fed the control diet. Lysozyme activity was higher in fish fed ≥86 mg AA equivalent of C2S or ≥15 mg AA equivalent of C2PP kg?1 than fish fed the control diet. Analysis by broken‐line regression of WG indicated that the adequate dietary vitamin C concentration from each vitamin C derivative in growing grouper is 46.2 mg AA equivalent of C2S kg?1 diet and 17.8 mg AA equivalent of C2PP kg?1 diet, and it also indicated that C2S is approximately 39% as effective as C2PP in meeting the vitamin C requirement for grouper. The data suggest that both C2S and C2PP supplementation support non‐specific immune responses of grouper.  相似文献   

16.
Atlantic salmon fry hatched from pigment-free eggs and from eggs containing the pigment astaxanthin were fed eleven casein/gelatine-based purified diets with varying levels of astaxanthin, ranging from 0 to 317 mg kg?1, to determine the optimum dietary astaxanthin level for satisfactory growth and survival during the start-feeding period. The fish were fed the experimental diets for a period of 11 weeks. No difference in performance was found between the two types of fry originating from the pigment-free eggs and those containing pigment. However, the dietary astaxanthin concentration was found to have a significant effect on both the growth and the survival of fry. Fish fed diets with astaxanthin concentrations below 5.3 mg kg?1 were found to have marginal growth. In addition, mortality was high in the groups fed diets with astaxanthin concentrations below 1.0 mg kg?1. The specific growth rate (SGR) was also affected by the dietary treatment. The lipid content was higher and the moisture content was lower in the fish fed the diets containing astaxanthin concentrations above 5.3 mg kg?1. The vitamin A and astaxanthin concentrations in whole-body samples of the fry were significantly affected by the dietary level of astaxanthin. A plateau level in whole-body vitamin A concentration was observed at dietary levels of approximately 80 mg astaxanthin kg?1 and higher, while no maximum astaxanthin concentration in whole-body samples was observed within the dietary levels used. The results suggest the need for a minimum dietary astaxanthin concentration of 5.1 mg kg?1 to achieve maximum growth and survival during the start-feeding period. The results indicate a low bioavailability of vitamin A palmitate and acetate and the results also suggest a provitamin A function for astaxanthin during the same period.  相似文献   

17.
To determine dietary magnesium (Mg) requirements of juvenile grass carp, Ctenopharyngodon idella, magnesium sulphate was added to the basal diet at 0, 150, 300, 600, 1200, 2400 mg Mg kg−1 diet. Each diet was fed to three replicate groups of juvenile grass carp (initial weight: 7.69 ± 0.13 g) in a closed, recirculating rearing system for 76 days. No mortality or nutritional deficiency signs were observed except the growth depression in fish fed the Mg‐deficient diet. Growth performance and activities of serum superoxide dismutase (SOD), glutathione peroxidase (GPx) and lysozyme (LSZ) were highest (P <0.05) in fish fed the diet supplemented with 600 mg Mg kg−1. The serum malondialdehyde (MDA) content was higher (P <0.05) in fish fed the diets supplemented with 0 and 150 mg Mg kg−1 than that in fish fed the diets with ≥300 mg Mg kg−1. Mg concentrations both in whole‐body and vertebrae increased with the increase in dietary Mg level up to 300 mg kg−1, whereupon the response reached a plateau. Analysis by second‐order polynomial regression of weight gain, by broken‐line regression of vertebrae Mg concentration and by linear regression of whole‐body Mg retention of fish indicated that the adequate dietary Mg concentration for juvenile grass carp was 713.5, 627.7 and 469.8 mg kg−1 diet, respectively.  相似文献   

18.
In order to assess the effect of dietary pyridoxine supplementation on the growth performance of Nile tilapia and the haematological response under heat stress, 192 fingerlings (8.41 ± 0.22 g) were randomly distributed into eight tanks and fed practical diets supplemented with increasing levels of pyridoxine (0.0; 5.0; 10.0 and 20.0 mg of pyridoxal HCl kg?1 diet) for 91 days. The fish were then weighed and the diet was quantified to determine the growth performance [weight gain (WG), feed intake, feed conversion ratio, protein efficiency rate, protein retention (PR) and survival percentage]. Haematological analyses (red blood cell count, haematocrit, haemoglobin, total leucocyte and differentiation, mean corpuscular volume, mean corpuscular haemoglobin concentration, albumin, globulin and albumin/globulin ratio) were carried out and then 32 fish were transferred and subjected to heat stress (32 °C) for 3 days, after which the haematological parameters were analysed. The fish fed the unsupplemented diet showed the lowest WG and PR. For the normal growth and health of the Nile tilapia, the Pyridoxine requirement in a practical diet is 10.0 mg of pyridoxine HCl kg?1.  相似文献   

19.
A study was conducted to evaluate the effect of free gossypol from glanded‐cottonseed meal (G‐CSM) (natural free gossypol) or gossypol‐acetic acid on growth performance, body composition, haematology, immune response and resistance of channel catfish (Ictalurus punctatus) to Edwardsiella ictaluri challenge. Soya bean meal‐based diets supplemented with 0, 100, 200, 400, and 800 mg kg?1 free gossypol from G‐CSM or gossypol‐acetic acid were fed to juvenile channel catfish in triplicate aquaria to apparent satiation twice daily for 12 weeks. Neither sources nor levels of dietary gossypol significantly influenced the final weight gain, feed intake, feed efficiency and survival of channel catfish. Similarly, whole‐body proximate composition, haematological parameters (red blood cell, white blood cell counts, haemoglobin and haematocrit), serum protein concentration, macrophage chemotaxis ratio, phagocytic activity and antibody production against E. ictaluri 21‐day postinfection were not significantly affected at either dietary sources or levels of gossypol. Gossypol concentrations of liver were linearly related to dietary level of gossypol but the retention rate varied dependent on sources of the dietary gossypol. At dietary gossypol levels of 400 or 800 mg kg?1, total gossypol concentrations in liver of fish fed dietary gossypol from G‐CSM were significantly higher than those of fish fed the corresponding levels of gossypol from gossypol‐acetic acid. The (+)‐isomer of gossypol was predominantly retained in liver regardless of dietary sources of gossypol. The ratio of (+) to (?) gossypol isomers in liver decreased with increasing dietary concentrations of gossypol. Serum lysozyme activity of fish fed dietary gossypol levels of 200 mg kg?1 or higher, either from G‐CSM or gossypol‐acetic acid, was significantly higher than that of the control. At a level of 800 mg kg?1 diet, gossypol from G‐CSM stimulated significantly higher lysozyme activity than gossypol from gossypol‐acetic acid. Fish fed diets containing 400 mg kg?1 gossypol or higher from G‐CSM or 800 mg kg?1 gossypol from gossypol‐acetic acid had significantly increased superoxide anion (O) production. However, neither the sources nor the levels of dietary free gossypol influenced the resistance of juvenile channel catfish to E. ictaluri challenge.  相似文献   

20.
A growth study was conducted to determine the dietary niacin requirement of the Indian catfish, Heteropneustes fossilis (Bloch), fingerlings (Mean weight 9.41 ± 0.18 g). Semi‐purified diets with five levels (0, 5, 10, 20 and 40 mg kg?1 diet) of supplemental niacin were fed to H. fossilis for 15 weeks. Each diet was fed to three replicate groups of fish. Results indicated that the highest (P < 0.05) weight gain was for the fish fed the diet supplemented with 20 mg niacin kg?1, followed by fish fed the diets with 40, 10 and 5 mg niacin kg?1, and the lowest in fish fed the unsupplemented control diet. Patterns of specific growth rate (SGR) and protein efficiency ratio (PER) were similar to those of the weight gain. Survival of fish fed the control diet and niacin‐supplemented diet was 58% and 91–100% respectively. Niacin deficiency signs such as anaemia, anorexia, lethargy and skin haemorrhage were observed in fish fed the control diet. The haematocrit values (Ht) were higher (P < 0.05) in fish fed the diets supplemented with niacin than in fish fed the control diet. The hepatosomatic indexes (HSI) of fish fed with or without niacin‐supplemented diets were not significantly (P > 0.05) different from each other. Both body protein and lipid content were higher (P < 0.05) in fish fed the diet supplemented with 20 and 40 mg niacin kg?1, respectively, than those fish fed other diets. The niacin content in liver significantly (P < 0.05) reflected the supplementation level in the diet and ranged from 29.11 to 40.31 mg g?1 tissue. The associated liver niacin content for growth was about 47 μg g?1 tissue. Quadratic regression analysis showed that the dietary niacin requirement for maximal growth of H. fossilis under these experimental conditions was about 25 mg kg?1 diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号