首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过硝化作用和反硝化作用可以有效控制循环水养殖系统水中的氧氮、亚硝酸盐和硝酸盐.进行水产养殖用水硝化作用的生物过滤器的研究已经系统而深入,而关于养殖用水反硝化作用的脱氮反应器的研究则并未引起相应的关注.水产养殖用水进行异养反硝化必需添加碳源.在已有的研究中,经常使用的甲醇等有机液体碳源存在添加量不易控制、出水有残留等弊端;可生物降解聚合物被证明是比较理想的水产养殖用水异养反硝化碳源的选择之一;近年来对以养殖活动中产生的残饵和粪便作为异养反硝化内供碳源的研究也引起了广泛的关注.总结了近年来循环水养殖系统异养反硝化不同种类碳源的效率、在实际生产中的可操作性的相关研究进展.  相似文献   

2.
本文通过在循环水养殖系统中添加不同浓度的臭氧,研究其对循环水养殖系统生物膜活性及其净化效能的影响.结果显示,当氧化还原电位(ORP)小于450 mV时,氨氮的去除率随着臭氧浓度升高而升高,最高去除率达39.9%,亚硝酸盐氮的平均去除率为28.2%,生物膜菌群的平均存活率为88.1%,生物膜对养殖水体氨氮和亚硝酸盐氮的处理效果良好;当氧化还原电位为500 mV时,经过臭氧24 h处理,氨氮和亚硝酸盐氮的去除率分别由36.5%、28.1%降到12.2%、8.4%,而臭氧4h处理后,生物膜对氨氮和亚硝酸盐氮的去除率分别由47.5%、32.1%降到5.0%、3.3%,水处理效果明显下降,生物膜菌群存活率由88.1%降到31.5%.由此可见臭氧添加浓度对生物膜及净化效能有重大影响.综合试验结果和分析评估,建议封闭循环水养殖系统的臭氧添加量以控制生物滤池内的氧化还原电位低于400 mV为宜,可保证循环水系统的安全性和经济性.  相似文献   

3.
循环水养殖系统的关键技术是养殖废水的处理和再利用。作为循环水养殖系统水处理的核心单元,生物膜对于养殖水体中污染物的去除起着至关重要的作用。水温、盐度、pH和溶氧等环境因子都会影响生物膜的功能,环境因子的突然变化会引起生物膜脱落、影响循环水养殖系统生物膜的形成过程及运行效果。控制好水温、盐度、pH和溶氧,生物膜净化效率就能达到较为理想的状态,养殖废水的处理效果就会更好。因此,有必要研究各个环境因子变量条件下的养殖废水去除动力学特征,以期为循环水养殖系统优化设计与运行管理提供理论依据。  相似文献   

4.
利用生物滤池模拟装置,以实际养殖废水为处理对象,探讨了4种常见有机碳源(葡萄糖、乙醇、红糖和淀粉)及不同碳氮比对有机物去除、硝化反应和异养反硝化作用等生物滤池主要净化过程的影响.碳源初选结果显示,同种碳源下,当C/N从0升高至6过程中,生物滤池对TAN(总氨氮)的去除率呈先升高后降低趋势;当C/N较小时,各组对NO2--N的去除率差异性不显著(P>0.05),随着C/N继续升高,NO2-N去除率则显著降低(P<0.05);乙醇组除外,其他3组随着C/N升高,CODMn去除率先迅速增大然后趋于稳定;各组NO3-N和TN去除率呈先升高后降低趋势,且变化显著(P<0.05),当C/N=4时,分别达到最高值.碳源复选结果显示,在C/N=4条件下,分别添加有机碳源(乙醇、淀粉、红糖和葡萄糖)的4组对TAN、NO3--N、TN和CODM的去除率显著高于对照组(P<0.05);而对照组NO2--N的去除率最高,达到93.59%;添加乙醇,生物滤池对水体中TAN、NO2-N、NO3-N和TN的去除效果优于其他3种碳源.研究表明,当C/N=4时,乙醇作为外加碳源能很好地提高生物滤池的净化效率.  相似文献   

5.
天津市海发珍品实业发展有限公司循环水养殖系统建于2000年初,受当时技术条件的限制,系统存在设备配套能力差,生物滤池处理能力不强,系统中有机悬浮物过多,缺少有效杀菌设备等缺陷,致使水质浑浊,养殖过程病害滋生,养殖产量不稳定。针对该系统存在的问题,我们在系统中增加蛋白分离器、弧形筛、液氧气站、臭氧和紫外线两级灭菌等设备,对生物滤池进行了分级,选择了比表面积大的生物填料,增加了生物滤池的生物处理能力,使整个氧气系统得到技术升级,系统中海水鱼的承载量由原来的15kg/m2提高到了30kg/m2,单位能耗降低了44.35%,日换水量由原来的50%降低到20%,稳定了海发公司海珍品的生产,在养殖系统中应用生物和营养调控技术,生产的海珍品达到了绿色产品的质量标准。  相似文献   

6.
采用循环水养殖系统实现养殖用水的重复利用并进行封闭式生产,被认为是一种环境友好的水产品获取方式。自养硝化过程将氨氮经由亚硝酸盐氮转化成硝酸盐氮,是目前封闭式循环水养殖系统中最普遍的一种氨氮控制途径。固定膜式生物过滤器为硝化细菌提供附着基面,形成生物膜,是常用的自养硝化实现方式,也是循环水养殖系统核心的水处理单元。可根据生物膜载体与水流的接触方式或载体流经滤器的水体中的位置分为几种类型。本文综述了滴滤式、浸没式、流化床、移动床等循环水养殖系统中较常用的几种生物过滤器,分析其优缺点并进行比较,同时结合具体案例进行生物过滤器的设计举例,为循环水养殖系统的构建提供参考。  相似文献   

7.
采用循环水养殖系统模拟装置,选择葡糖糖、乙醇、红糖和淀粉等4种碳源,按C(TOC)/N=4控制添加量,对不同碳源组和对照组(不添加碳源)牙鲆幼鱼的养殖效果进行比较。结果显示,牙鲆幼鱼经过40 d的饲喂,对照组增重率最低,为104.0%,与乙醇组和葡萄糖组之间存在显著性差异(P0.05);各组存活率均超过85%;红糖组饵料系数略大于对照组,其它3组明显小于对照组;养殖过程中各组氨氮浓度均小于0.3 mg/L;硝酸盐氮浓度先升高后趋于稳定,稳定阶段对照组含量高于其它4组;添加少量可溶性有机碳源会导致养殖水体中有机物含量迅速升高,经过微生物分解利用短时间内又恢复正常。研究表明,向循环水养殖系统中添加适量有机碳源对牙鲆幼鱼的养殖效果起到促进作用。  相似文献   

8.
为研究养殖循环水系统中分解氨氮能力较强的相关微生物,从生物滤料载体上收集正常运行条件下自然生长的生物膜。通过富集培养、分离提纯、DNA提取、PCR扩增、16SrRNA测序等步骤,得到一株具有分解氨氮能力的荧光假单胞菌Pseudomonas fluorescens SS101,菌落为淡黄色。结果显示,广泛存在能够分解养殖污水中氨氮并用于自身生长的微生物,除了常见的硝化细菌,一些特异性微生物也具有此功能。这项研究为进一步探索养殖污水微生物群落、优化生物滤池的污水处理性能提供了新思路。  相似文献   

9.
海水养殖池塘底泥异养硝化作用的研究   总被引:1,自引:0,他引:1  
王李宝  万夕和  许璞  朱彬 《海洋渔业》2006,28(2):147-151
以两种不同养殖对象池塘中的浅层底泥为样品,研究其在外加有机碳源(乙酸钠)的情况下硝化作用所受的影响,包括了NO2--N累积量的变化和培养液pH值的变化。结果表明,在外加有机碳源(乙酸钠)的情况下,供试底泥的硝化作用虽然受到了一定的影响,但仍然存在,且保持了较高的硝化能力。并进一步考察了上述两种底泥对水体中有机质、氨态氮和亚硝酸盐的去除能力,探寻了利用异养硝化作用改善水质环境的潜力。  相似文献   

10.
为探究凡纳滨对虾(Litopenaeus vannamei)工厂化循环水养殖系统的养殖水体水质情况以及微生物菌群的组成结构,本研究利用高通量测序技术和生物信息学分析手段,测定凡纳滨对虾工厂化循环水养殖过程一级移动床生物净化、二级固定床生物净化、养殖水体的水质指标、水体和生物净化载体以及对虾肠道微生物菌群的组成。结果显示,水体的氨氮(NH4+-N)和亚硝态氮(NO2–-N)质量浓度显著降低,分别为0.85和0.21 mg/L。养殖系统水体、生物净化载体和虾肠道样品中共有的优势菌为变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes),此外,一级、二级生物净化系统水体中的放线菌门(Actinobacteria)为优势菌,生物净化载体中浮霉菌门(Planctomycetes)和硝化螺旋菌门(Nitrospirae)为优势菌;对虾肠道中的厚壁菌门(Firmicutes)为优势菌。另外,对虾养殖循环水系统中生物净化载体上的细菌物种含量比水样中的细菌物种少,但微生物多样性高于养殖水体,生物净化载体中微生物具有低丰度和高多样性的特点。综上所述,生物净化系统可有效地增加水体中促进氮、磷代谢的微生物菌群,调控养殖水体的水质指标,研究结果为凡纳滨对虾工厂化循环水养殖系统构建及水质调控提供理论依据。  相似文献   

11.
生物过滤技术是循环水养殖系统中很关键的水处理技术,选择合适的滤料在很大程度上决定着生物过滤效果的好坏和循环水养殖系统能否正常运行。本次试验对一种新型悬浮式滤料在循环水高密度养殖系统中的水处理能力进行了研究,结果表明:(1)该滤料的挂膜性能好,挂膜时间短,且生物膜状态稳定;(2)该滤料的生物过滤能力好,具有较高的氨氮去除率和氨氮负荷,最高分别为57.5%和182.9 g/(m~3·d);其亚硝酸盐去除率平均为45.4%。  相似文献   

12.
循环水养殖系统生物滤器负荷挂膜技术   总被引:4,自引:0,他引:4       下载免费PDF全文
循环水养殖系统启动运行前往往需要经过一段时间的生物膜预培养,使生物膜达到成熟稳定,从而保证系统的水质净化功能。本研究通过养殖试验,研究了生物滤器负荷挂膜的技术方法,以期实现生物膜的快速成熟和系统的快速启动。为此,构建了6组循环水系统组成的养殖车间,建成后立即投入试验生产。试验为期120 d,养殖种类为红鳍东方鲀,初始放养平均体重(632.5±2.26)g。期间,红鳍东方鲀平均增重29.91%,养殖成活率98.7%,养殖密度由(19.34±1.89)kg/m3增加到(32.17±3.40)kg/m3,投饵率由0.2%增加到0.5%–0.7%,每日换水量由50%逐渐减至10%。结果表明,在生物膜的生长期,通过对投饵量及新水补充量的有效调节,可以把养殖水体中的氨氮和亚硝氮浓度控制在安全范围以内,以保证养殖鱼类的生长。生物膜在50天左右达到完全成熟,此后便可依靠生物膜的净化作用将氨氮浓度控制在0.5?1.2 mg/L、亚硝氮浓度控制在0.2?0.5 mg/L、pH值控制在6.5–7.5、COD值低于4 mg/L、细菌总数控制在800–2100 cell/ml的安全范围内。利用生物滤器负荷挂膜技术,在合理调控水质指标的条件下,循环水养殖系统建成后可以立即投入生产,实现生物滤器挂膜与养殖生产的同步进行。  相似文献   

13.
<正>固体颗粒物是循环水养鱼系统主要污染物质,也是病原体的生存基础,养殖系统颗粒物分离率较低,养鱼系统不清洁导致水质污染、病害频发,是目前循环水养鱼效果不理想主要原因之一。针对这一问题,笔者研究的生态清洁型封闭式循环水养鱼方法,从预防病害发生入手,应用平流分离、旋流分离和生物滤池过滤等固液分离技术,同时增加紫外线消毒和液态  相似文献   

14.
养殖尾水污染已成为制约水产养殖业发展的重要因素。填料生物膜养殖尾水处理系统是近年来开发的一种经济、高效去除养殖废水污染物的尾水处理设施。然而关于填料生物膜在氮素迁移转化中微生物生态效应及其功能知之甚少。为此,本研究利用宏基因组学方法剖析填料生物膜微生物群落氮循环过程及其潜在驱动机制。研究发现,填料生物膜微生物主要参与氮代谢活动。与水体相比,填料生物膜的碳代谢活动能力较强(P<0.05);填料生物膜上硝化作用羟胺还原酶、反硝化作用氧化亚氮还原酶和一氧化氮还原酶及其编码功能基因nosZ和norB、异化硝酸盐还原作用亚硝酸盐还原酶及其功能基因napA、nrfA和nirB、以及固氮酶及功能基因nif HDK丰度相对较高(P<0.05),说明填料生物膜具有比周围水环境更强的氮周转能力。在属水平上,Pseudomonas菌、Spirochaeta菌、Opitutus菌和Syntrophus菌是填料生物膜氮素转化关键过程的重要功能微生物类群。上述研究结果表明,养殖尾水处理系统内复合填料生物膜主要通过关键功能物种介导的固氮和反硝化作用实现养殖尾水氮素的转化和迁移。本研究结果作为野外实验证据可为今后复合填料生物膜系统在水产养殖尾水治理实践提供理论依据。  相似文献   

15.
为比较循环水和内循环系统对南美白对虾标粗过程影响的理化因子差异,在厂内水泥池分别用循环水和内循环模式进行了对虾标粗过程的试验。结果表明,循环水和内循环养殖模式都有着需水量较少、能耗低、对环境无害等优势,但内循环养殖模式独立运行单元,可防止外源致病菌侵入,其成本低,管理和运行方便,无须外加有机碳源,降低弧菌爆发风险;循环水养殖和内循环系统2种模式在标粗中对于温度、溶解氧、pH值和浊度的影响差异不大;与循环水养殖模式相比,标粗前期内循环系统中的氨氮和亚硝氮值偏高,中后期2种养殖模式产生的氨氮和亚硝氮值趋于一致,内循环系统的COD含量低,TN含量明显偏高。  相似文献   

16.
工厂化循环水养殖南美白对虾生产中,在饲养小于4 cm的对虾苗养殖时,循环水模式存在明显的缺陷,容易出现堵塞出水管过滤网、虾苗无法有效摄食以及水质恶化等方面的问题。本研究结合国内外生物絮团用于水产养殖的理论和研究成果,在幼虾饲养阶段采用生物絮团控制水质的养殖方法,对絮团形成时间、添加碳源种类、添加量、添加方式等技术关键点开展初步研究,在25 d标苗期全程不换水,幼虾存活率72. 8%,且个体均匀。研究表明,在标苗阶段改用基于絮团的养殖模式,能有效解决循环水养殖系统中幼虾生长不均匀,存活率低等问题,提高工厂化循环水养虾的总体成功率。  相似文献   

17.
石斑鱼循环水养殖系统微生物群落结构   总被引:3,自引:1,他引:2  
通过16S rRNA基因片段高通量测序研究了褐点石斑鱼(Epinephelus fuscoguttatus)和东星斑(Plectropomus leopardus)循环水养殖系统水体细菌种群结构。结果显示石斑鱼循环水养殖系统中优势细菌类群为变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)、蓝藻门(Cyanobacteria)、梭杆菌门(Fusobacteria)、厚壁菌门(Firmicutes)和硝化螺旋菌门(Nitrospira)。其中养殖塘、固液分离池、沉淀池和蛋白分离池中主要优势细菌为γ-变形菌纲(Gammaproteobacteria),紫外消毒池和补氧池中则以a-变形菌纲(Alphaproteobacteria)为主,而生物滤池中两者比例接近,均为优势种群。从养殖塘到补氧池细菌多样性指数先降低后升高,生物滤池中达到最高值,之后再次下降至紫外消毒池中达到最低值,补氧池中有所回升。PCoA分析和聚类分析结果表明,养殖水在紫外消毒前后其细菌群落组成有着明显的差异。水质理化指标检测表明,经过净化处理后,循环系统的养殖水溶解氧含量上升,氨氮和亚硝酸盐含量下降并维持在较低的浓度。环境因子与细菌群落结构相关性分析结果表明,磷酸盐、pH、溶解氧和温度等指标可能对细菌群落结构影响相对较大,但未发现两者间有很显著的相关性,这可能与实验样本较少有关。  相似文献   

18.
<正>关注循环水生物岛难题可有效处理亚硝酸超标深圳力合环保技术有限公司作为一家集科研、环保设备供应等为主的高新技术企业,近2年来在循环水处理上颇有研究。该公司新生产上市的循环水处理系统,在改性生物填料和反硝化滤池研究上取得突破。循环水养殖系统注重排污设计"为什么会做循环水?你首先要考虑的是水为什么会变脏?"公司总经  相似文献   

19.
上世纪90年代初对虾病毒病大流行之后,泰国从防病出发首先研制和使用了室外封闭式循环水养殖方法,在我国一些地区近年来也先后开展了对虾循环水养殖试验,取得了较好效果。这些研究成果的一个共同特点和优点是使用养殖鱼、贝类的大型生物净化池来承担系统中的水质净化  相似文献   

20.
池塘循环水生态养殖效果分析   总被引:8,自引:0,他引:8  
用多种生物修复技术结合池塘工程改造手段,构建封闭型池塘循环水生态养殖系统。养殖水体的水质指标监测结果表明,该循环系统对TN、TP、NH4+-N及CODMn的平均去除率分别达62.89%、60.24%、56.52%、47.81%,具有很好的净化效果,能够满足养殖用水的要求,在整个养殖过程中实现了养殖尾水零排放。该循环水养殖模式符合当前太湖保护的规划要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号